• Title/Summary/Keyword: column yield type

Search Result 85, Processing Time 0.023 seconds

Restoring Force Characteristics of Column Yield Type Steel Rahmen (기둥 항복형 철골라멘의 복원력 특성)

  • Yoon, Myung-Ho
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.4 no.2
    • /
    • pp.44-51
    • /
    • 2004
  • It is generally known in seismic design that the beam yield type frames have more advantages than column yield type of which damage is likely to concentrate to any story. However we may design a building as a beam yield type, it becomes actually a column yield type collapse mode for slab floor diaphragm effect. Considering these points, the column yield type frames are selected and designed as the specimens. The object of this study is to grasp quantitatively the restoring force characteristic values and to estimate the seismic performances of column yield type steel rahmen.

  • PDF

Research of geothermal analysis and experimental test for Standing Column Well type system (우물관정(SCW: Standing Column Well)형 냉난방 시스템의 지중열 해석과 실증 실험에 관한 연구)

  • Kwon, Iksang;Hong, Gibae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.173-173
    • /
    • 2010
  • This thesis identified basic design elements (Sustainable Yield, Temperature of Groundwater, Depth of Well, Separation Distance between wells) regarding installation of Standing Column Well, Geothermal Heat pump System by dynamic analysis.

  • PDF

Research for geothermal analysis on design of Standing Column Well type system (우물관정(SCW: Standing Column Well)형 지열 냉난방 시스템 설계를 위한 지중열 해석에 관한 연구)

  • Kwon, Ik-Sang;Rhee, Kwon-Joong;Kim, Tae-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.576-580
    • /
    • 2009
  • This thesis identified basic design elements(Sustained Yield, Depth of Well, Separation Distance between wells) regarding installation of Standing Column Well, Geothermal Heat pump System by dynamic analysis.

  • PDF

Rotational behavior of exposed column bases with different base plate thickness

  • Cui, Yao;Wang, Fengzhi;Li, Hao;Yamada, Satoshi
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.497-507
    • /
    • 2019
  • Exposed column base connections are used in low- to mid-rise steel moment resisting frames. This paper is to investigate the effect of the base plate thickness on the exposed column base connection strength, stiffness, and energy dissipation. Five specimens with different base plate thickness were numerically modelled using ABAQUS software. The numerical model is able to reproduce the key characteristics of the experimental response. Based on the numerical analysis, the critical base plate thickness to identify the base plate and anchor rod yield mechanism is proposed. For the connection with base plate yield mechanism, the resisting moment is carried by the flexural bending of the base plate. Yield lines in the base plate on the tension side and compression side are illustrated, respectively. This type of connection exhibits a relatively large energy dissipation. For the connection with anchor rod yield mechanism, the moment is resisted through a combination of bearing stresses of concrete foundation on the compression side and tensile forces in the anchor rods on the tension side. This type of connection exhibits self-centering behavior and shows higher initial stiffness and bending strength. In addition, the methods to predict the moment resistance of the connection with different yield mechanisms are presented. And the evaluated moment resistances agree well with the values obtained from the FEM model.

Experimental study on simplified steel reinforced concrete beam-column joints in construction technology

  • Teraoka, Masaru;Morita, Koji;Sasaki, Satoshi;Katsura, Daisuke
    • Steel and Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.295-312
    • /
    • 2001
  • The purpose of this paper is to propose a new type of steel reinforced concrete (SRC) beam-column joints and to examine the structural performance of the proposed joints, which simplify the construction procedure of steel fabrication, welding works, concrete casting and joint strengthening. In the proposed beam-column joints, the steel element of columns forms continuously built-in crossing of H-sections (${\Box}$), with adjacent flanges of column being connected by horizontal stiffeners in a joint at the level of the beam flanges. In addition, simplified lateral reinforcement (${\Box}$) is adopted in a joint to confine the longitudinal reinforcing bars in columns. Experimental and analytical studies have been carried out to estimate the structural performance of the proposed joints. Twelve cruciform specimens and seven SRC beam-column subassemblage specimens were prepared and tested. The following can be concluded from this study: (1) SRC subassemblages with the proposed beam-column joints show adequate seismic performances which are superior to the demand of the current code; (2) The yield and ultimate strength capacities of the beam-to-column connections can be estimated by analysis based on the yield line theory; (3) The skeleton curves and the ultimate shear capacities of the beam-column joint panel are predicted with a fair degree of accuracy by considering a simple stress transfer mechanism.

Performance of Column Type Bioreactor Packed with Immobilized Cyclodextrin Glucanotransferase for Cyclodextrin Production

  • Lee, Yong-Hyun;Lee, Sang-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.1
    • /
    • pp.63-69
    • /
    • 1991
  • Performance of column type bioreactor packed with immobilized cyclodextrin glucanotransferase (CGTase) on chitosan and Amberite IRA 900 was evaluated for cyclodextrin(CD) production. For CGTase immobilized on chitosan, the maximum CD conversion yield of 42% was achieved at the range of 88-168 units of immobilizied CGTase per gram of chitosan, retention time of 0.3 hr, and from 5.0% (w/v) of partially cyclized soluble starch. On the other hand, for CGTase immobilized on Amberite IRA 900, the maximum conversion yield of 40% was obtained at the range of 3.6-11.0 units of immobilized CGTase per gram of carrier and retention time of 1.2 hr from 5.0% of substrate. Above CD conversion yields are almost identical level with that can be obtained with soluble CGTase of 47%. The productivities of bioreactor packed with immobilized CGTase were 17.0g of CD/lㆍhr for amberite IRA 900 and 15.5g of CD/lㆍhr for chitosan. The partially cyclized starch with soluble CGTase were more suitable as substrate to achieve better CD conversion yield, and 5% (w/v) of partially cyclized soluble starch containing 10% (w/w) of CD was found to be most suitable to obtain maximum CD conversion yield.

  • PDF

Effect of shape and amount of transverse reinforcement on lateral confinement of normal-strength concrete columns

  • Kim, Hyeong-Gook;Kim, Kil-Hee
    • Advances in concrete construction
    • /
    • v.14 no.2
    • /
    • pp.79-92
    • /
    • 2022
  • The amount and configuration of transverse reinforcement are known as critical parameters that significantly affect the lateral confinement of concrete, the ductility capacity, and the plastic hinge length of RC columns. Based on test results, this study investigated the effect of the three variables on structural indexes such as neutral axis depth, lateral expansion of concrete, and ductility capacity. Five reinforced concrete column specimens were tested under cyclic flexure and shear while simultaneously subjected to a constant axial load. The columns were reinforced by two types of reinforcing steel: rectangular hoops and spiral type reinforcing bars. The variables in the test program were the shape, diameter, and yield strength of transverse reinforcement. The interactive influence of the amount of transverse reinforcement on the structural indexes was evaluated. Test results showed that when amounts of transverse reinforcement were similar, and yield strength of transverse reinforcement was 600 MPa or less, the neutral axis depth of a column with spiral type reinforcing bars was reduced by 28% compared with that of a column reinforced by existing rectangular hoops at peak strength. While the diagonal elements of spiral-type reinforcing bars significantly contributed to the lateral confinement of concrete, the strain of diagonal elements decreased with increases of their yield strength. It was confirmed that shapes of transverse reinforcement significantly affected the lateral confinement of concrete adjacent to plastic hinges. Transverse reinforcement with a yield strength exceeding 600 MPa, however, increased the neutral axis depth of normal-strength concrete columns at peak strength, resulting in reductions in ductility and energy dissipation capacity.

Behavior of Beam-to-Concrete Filled Steel Tube Column Rigid Connections (콘크리트충전 각형강관기둥-보 접합부의 거동에 관한 연구)

  • Kim, Cheol Hwan;Lee, Eun Taik
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.741-748
    • /
    • 1998
  • Experimental studies were carried out with test parameters: diaphragm yield type and beam yield type, the opening hole size of inner steel diaphragm, and the existence of slab in order to understand the behavior of beam-to-concrete filled steel tube column rigid connections under cyclic loading condition. Test results show that the connections have good rotational capacity when the beam yields first and the joints should be designed such that the beam yields prior to the inner diaphragms.

  • PDF

Seismic resistance of exterior beam-column joints with non-conventional confinement reinforcement detailing

  • Bindhu, K.R.;Jaya, K.P.;Manicka Selvam, V.K.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.6
    • /
    • pp.733-761
    • /
    • 2008
  • The failure of reinforced concrete structures in recent earthquakes caused concern about the performance of beam column joints. Confinement of joint is one of the ways to improve the performance of beam column joints during earthquakes. This paper describes an experimental study of exterior beam-column joints with two non-conventional reinforcement arrangements. One exterior beam-column joint of a six story building in seismic zone III of India was designed for earthquake loading. The transverse reinforcement of the joint assemblages were detailed as per IS 13920:1993 and IS 456:2000 respectively. The proposed nonconventional reinforcement was provided in the form of diagonal reinforcement on the faces of the joint, as a replacement of stirrups in the joint region for joints detailed as per IS 13920 and as additional reinforcement for joints detailed as per IS 456. These newly proposed detailing have the basic advantage of reducing the reinforcement congestion at the joint region. In order to study and compare the performance of joint with different detailing, four types of one-third scale specimens were cast (two numbers in each type). The main objective of the present study is to investigate the effectiveness of the proposed reinforcement detailing. All the specimens were tested under reverse cyclic loading, with appropriate axial load. From the test results, it was found that the beam-column joint having confining reinforcement as per IS: 456 with nonconventional detailing performed well. Test results indicate that the non-conventionally detailed specimens, Type 2 and Type 4 have an improvement in average ductility of 16% and 119% than their conventionally detailed counter parts (Type1 and Type 3). Further, the joint shear capacity of the Type 2 and Type 4 specimens are improved by 8.4% and 15.6% than the corresponding specimens of Type 1 and Type 3 respectively. The present study proposes a closed form expression to compute the yield and ultimate load of the system. This is accomplished using the theory of statics and the failure pattern observed during testing. Good correlation is found between the theoretical and experimental results.

Beam-Column Junction Type Damper of Seismic Performance Enhancement for Structures (구조물의 내진성능 보강을 위한 보-기둥 접합형 감쇠장치)

  • Noh, Jung-Tae;Woo, Sung-Sik;Lee, Sang-Hyun;Chung, Lan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.855-863
    • /
    • 2009
  • In this study, a beam-column junction type damper is proposed which saves the inner and outer space for the installation of damping devices and allows easy adjustment of control performance The result of the numerical analysis indicated that the displacement response and base shear of a single degree of freedom system by seismic load, El Centro 1940 was reduced with yield moment of the joint hinge and the specific yield moment ratio $\delta$ of the joint hinge existed for the optimal seismic performance. In addition, the dynamic nonlinear characteristics, effects of yielding and dependence of natural period of bi-linear system with the junction type damper is identified. The analysis of multi-degree of freedom system showed that responses of the controlled structures was reduced significantly as the number of a story increases and yield moment ratio decreases when the system is excited by seismic load and sine wave. On top of that, it was also observed that energy dissipation at the joint connected with the dampers was remarkable during excitation.

  • PDF