• Title/Summary/Keyword: column shear

Search Result 986, Processing Time 0.027 seconds

An Anisotropic Hardening Elasto-Plastic Constitutive Model for the Behavior at Small-to-Large Strain Conditions (미소변형률 및 대변형률 조건의 거동에 대한 비등방경화 탄소성 구성모델)

  • 오세붕;권기철;정순용;김동수
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.65-73
    • /
    • 2000
  • An elasto-plastic constitutive model was proposed, in which the behavior at small-to-large strain level can be modeled. The proposed model is based on the anisotropic hardening description with the generalization of isotropic hardening rule and the total stress concept. From a mathematical approach it was proved that the model includes the previous successful models. The model was verified by a series of resonant column tests, torsional shear tests and triaxial tests, and the proposed model predicted small-to-large strain behavior more consistently and accurately than the hyperbolic model and the Ramberg-Osgood model for a weathered granitic soil. In addition, the nonlinearity under small strain condition was predicted appropriately for the torsional shear test results.

  • PDF

Geometric Non-linear Analysis of the Plane Frame Structures including Shear Deformation Effect (전단변형(剪斷變形)을 고려(考慮)한 평면(平面)뼈대 구조물(構造物)의 기하적(幾何的)인 비선형(非線形) 해석(解析))

  • Kim, Moon Young;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.27-36
    • /
    • 1990
  • Two beam/column elements in order to analyze the geometric nonlinear plane framed structures including the effects of transverse shear deformation and bending stretching coupling are developed. In the case of the first element (finite segment method), tangent stiffness matrix are derived by directly integrating the equilibrium equations whereas in the case of the second element (finite element method) elastic and geometric stiffness matrices are calculated by using the hermitian polynomials including shear deformation effect as the shape function. Both elements possess the usual six degree of freedoms. Numerical results are presented for the selected test problems which demonstrate that both elements represent reliable and highly accurate tools.

  • PDF

Seismic Performance Evaluation of Circular RC Bridge Piers with Shear-Flexure Behavior (휨-전단 복합 거동을 보이는 RC 원형교각의 내진성능 평가)

  • 김병석;김영진;곽임종;조창백;조정래
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.3
    • /
    • pp.29-36
    • /
    • 2001
  • Same as-built drawings in national roadway bridges in Korea were examined. As a result, many bridge piers were found whose aspect ratios are in the vicinity of 2.5. These columns are expected to do shear-flexure behaviour, but the previous research works considered flexure behaviour columns only. In the study, therefore, a shear-flexure behaviour column was selected as the model pier, and quasi static test on the full and 1/2 scale models was carried out. From the test results, the scale effect on the seismic performance evaluation was analyzed, and the seismic performance of the model bridge pier without seismic details was evaluated by the capacity spectrum method.

  • PDF

Atomizing Characteristics of Coaxial Porous Injectors (다공성재를 이용한 동축형 분사기의 미립화특성)

  • Kim, Do-Hun;Shin, Jeung-Hwan;Lee, In-Chul;Koo, Ja-Ye
    • Journal of ILASS-Korea
    • /
    • v.17 no.1
    • /
    • pp.35-44
    • /
    • 2012
  • To improve the mixing and atomizing performance at the center region of the conventional coaxial shear injector spray, the concept of a coaxial porous injector was invented. This novel injection concept for liquid rocket engines utilizes the Taylor-Culick flow in the cylindrical porous tube. The 2-dimensional injector, which can be converted in three injection configurations, was fabricated, and several cold flow tests using water-air simulant propellant was performed. The hydraulic characteristics and the effects of a gas flow condition on the spray pattern and the Sauter mean diameter (SMD) was analyzed for each configuration. The atomizing mechanism of coaxial porous injector was different with the coaxial shear injector, and it was explained by the momentum of the gas jet, which is injected normally against the center liquid column, and by the secondary disintegration at the wavy interface of liquid jet, which was generated at the recessed region. The SMD of 2D coaxial porous injector, which has higher gas momentum, was measured and it shows better atomizing performance at the center and outer side of spray than the 2D coaxial shear injector.

A study on improvement of wind-resistance characteristics of the structure supporting road sign (도로표지판 지지구조물의 내풍성능 향상에 관한 연구)

  • Son, Yong-Chun;Park, Su-Yeong;Im, Jong-Guk;Sin, Min-Cheol
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.485-488
    • /
    • 2008
  • The structure supporting road sign is a road information facility for ensuring the safe transportation and smooth traffic. But, lots of road information facilities were damaged by the typhoon "Maemi" in 2003. Such damaged facilities should be rehabilitated and could increase economic loss by causing traffic accident. Therefore, in this study, behavior that reduce wind load and improve wind resistance of the structure supporting road sign are studied about wind load beyond design specification by abnormal climate as below. The first is wind load reducing technique such that shear key resist wind load that is not greater than design wind speed but in case that it is over the design wind limit, column member is rotated on the inner steel pipe axis by the brittle failure of shear key. The second is the technique such that fail-safe the overturning of road sign panel by equipment installation in the vertical member. The third is the technique of installing stiffening plate inside the vertical member to relieve stress concentration.

  • PDF

Study on seismic retrofit of structures using SPSW systems and LYP steel material

  • Zirakian, Tadeh;Zhang, Jian
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.1-23
    • /
    • 2016
  • Steel plate shear walls (SPSWs) have been shown to be efficient lateral force-resisting systems, which are increasingly used in new and retrofit construction. These structural systems are designed with either stiffened and stocky or unstiffened and slender web plates based on disparate structural and economical considerations. Based on some limited reported studies, on the other hand, employment of low yield point (LYP) steel infill plates with extremely low yield strength, and high ductility as well as elongation properties is found to facilitate the design and improve the structural behavior and seismic performance of the SPSW systems. On this basis, this paper reports system-level investigations on the seismic response assessment of multi-story SPSW frames under the action of earthquake ground motions. The effectiveness of the strip model in representing the behaviors of SPSWs with different buckling and yielding properties is primarily verified. Subsequently, the structural and seismic performances of several code-designed and retrofitted SPSW frames with conventional and LYP steel infill plates are investigated through detailed modal and nonlinear time-history analyses. Evaluation of various seismic response parameters including drift, acceleration, base shear and moment, column axial load, and web-plate ductility demands, demonstrates the capabilities of SPSW systems in improving the seismic performance of structures and reveals various advantages of use of LYP steel material in seismic design and retrofit of SPSW systems, in particular, application of LYP steel infill plates of double thickness in seismic retrofit of conventional steel and code-designed SPSW frames.

Estimation of Seismic Capacity of RC Frames Designed to Gravity Loads in Korea (국내 비내진 설계된 RC 골조의 내진 저항성능)

  • 이영욱
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1155-1160
    • /
    • 2001
  • The seismic design regulations have not been applied to low-rised buildings which are less than 6 stories. To evaluate the seismic strength of the low-rised building which is designed only for gravity, a theoretical and numerical analysis are peformed. In theoretical analysis, column hinge sway mechanism is assumed. For the numerical, push-over analysis is executed for 3 and 4 storied buildings. From the evaluations, the minimum base shear is found to be 0.1 g

  • PDF

Failure Mechanism for Pull-Out Capacity of Headed Reinforcement (Head Reinforcement 인발강도를 위한 파괴 메캐니즘)

  • 홍성걸;최동욱;권순영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.233-238
    • /
    • 2002
  • This study presents failure mechanisms for the pull-out strength of headed reinforcement for upper bound solution based on the limit theorem. The failure mechanisms to be presented follow the failure surface pattern of punching shear failure found in the joints of slab with a column. Several failure surfaces of the mechanisms have different characteristics for dissipation works and these mechanisms are able to interpret the role of bar details surrounding headed reinforcement.

  • PDF

Shear Behavior of Steel Eccentric Link Subject to Seismic Loads (철골 보 접합부재의 지진전단거동에 관한 연구)

  • 손기상
    • Journal of the Korean Society of Safety
    • /
    • v.6 no.3
    • /
    • pp.35-39
    • /
    • 1991
  • Concentrically braced frames are limited in their ability to absorb energy during an earthquake However by placing the bracing members eccentric to the beam column joints, an energy absorbing link unit is produced. The energy is absorbed by the link and / or columns deforming inelastically. Three models of a multistorey structure were analyzed using DRAIN-2D computer program .Three link lengths were used in the analyses, 7, 11 and 15 inches. The yield patterns are produced. However it is interesting to note the relative valuses of force and moment obtained.

  • PDF

지하외벽슬래브의 부재력 분포에 대한 수치적 연구

  • 김영찬;김동건
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2002.05a
    • /
    • pp.271-276
    • /
    • 2002
  • A numerical study using linear finite element analysis is performed to investigate the behavior of basement wall subject to soil and water pressure in this study, parametric studies are peformed to investigate the variation of moment and shear force according to column-to-wall stiffness ratios and aspect ratios. Scaled factors applicable to the design of basement wall are proposed with the illustration of design examples.

  • PDF