• Title/Summary/Keyword: column shear

Search Result 986, Processing Time 0.03 seconds

Experimental study on two types of new beam-to-column connections

  • Ma, Hongwei;Jiang, Weishan;Cho, Chongdu
    • Steel and Composite Structures
    • /
    • v.11 no.4
    • /
    • pp.291-305
    • /
    • 2011
  • The new structure consisting of continuous compound spiral hoop reinforced concrete (CCSHRC)column and steel concrete composite (SCC) beam has both the advantages of steel structures and concrete structures. Two types of beam-to-column connections applied in this structural system are presented in this paper. The connection details are as follows: the main bars in beam concrete pass through the core zone for both types of connections. For connecting bar connection, the steel I-beam webs are connected by bolts to a steel plate passing through the joint while the top and bottom flanges of the beams are connected by four straight and two X-shaped bars. For bolted end-plate connection, the steel I-beam webs are connected by stiffened extended end-plates and eight long shank bolts passing through the core zone. In order to study the seismic behaviour and failure mechanisms of the connections, quasi-static tests were conducted on both types of full-scale connection subassemblies and core zone specimens. The load-drift hysteresis loops show a plateau for the connecting bar connection while they are excellent plump for bolted end-plate connection. The shear capacity formulas of both types of connections are presented and the values calculated by the formula agree well with the test results.

Seismic behavior and strength of L-shaped steel reinforced concrete column-concrete beam planar and spatial joints

  • Chen, Zongping;Xu, Deyi;Xu, Jinjun;Wang, Ni
    • Steel and Composite Structures
    • /
    • v.39 no.3
    • /
    • pp.337-352
    • /
    • 2021
  • The study presented experimental and numerical investigation on the seismic performance of steel reinforced concrete (SRC) L-shaped column- reinforced concrete (RC) beam joints. Various parameters described as steel configuration form, axial compressive ratio, loading angle, and the existence of slab were examined through 4 planar joints and 7 spatial joints. The characteristics of the load-displacement response included the bearing capacity, ductility, story drift ratio, energy-dissipating capacity, and stiffness degradation were analyzed. The results showed that shear failure and flexural failure in the beam tip were observed for planar joints and spatial joint, respectively. And RC joint with slab failed with the plastic hinge in the slab and bottom of the beam. The results indicated that hysteretic curves of spatial joints with solid-web steel were plumper than those with hollow-web specimens. The capacity of planar joints was higher than that of space joints, while the opposite was true for energy-dissipation capacity and ductility. The high compression ratio contributed to the increase in capacity and initial stiffness of the joint. The elastic and elastic-plastic story deformation capacity of L-shaped column frame joints satisfied the code requirement. A design formula of joint shear resistance based on the superposition theory and equilibrium plasticity truss model was proposed for engineering application.

Cyclic behaviour of concrete encased steel (CES) column-steel beam joints with concrete slabs

  • Chu, Liusheng;Li, Danda;Ma, Xing;Zhao, Jun
    • Steel and Composite Structures
    • /
    • v.29 no.6
    • /
    • pp.735-748
    • /
    • 2018
  • In this paper, the cyclic behavior of steel beam-concrete encased steel (CES) column joints was investigated experimentally and numerically. Three frame middle joint samples with varying concrete slab widths were constructed. Anti-symmetrical low-frequency cyclic load was applied at two beam ends to simulate the earthquake action. The failure modes, hysteretic behavior, ultimate load, stiffness degradation, load carrying capacity degradation, displacement ductility and strain response were investigated in details. The three composite joints exhibited excellent seismic performance in experimental tests, showing high load-carrying capacity, good ductility and superior energy dissipation ability. All three joint samples reached their ultimate loads due to shear failure. Numerical results from ABAQUS modelling agreed well with the test results. Finally, the effect of the concrete slab on ultimate load was analyzed through a parametric study on concrete strength, slab thickness, as well as slab width. Numerical simulation showed that slab width and thickness played an important role in the load-carrying capacity of such joints. As a comparison, the influence of concrete grade was not significant.

Effects of Four Sides Constraint for Shear Strength of ${\sharp}$ Shape Double Beam-Column Connections (정(${\sharp}$)자형 더블보-기둥 접합부의 전단강도에 대한 4변 구속의 영향)

  • Kim, Lyang-Woon;Chung, Chang-Yong;Lee, Soo-Kueon;Kim, Sang-Sik;Choi, Kwang-Ho;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.209-212
    • /
    • 2008
  • DBS method of underground works can reduce the term of works for manufacturing the underground members in factory and producing members in modularization, apart from that, the horizontal member could be used as permanent members, which are the advantages of this method. As the component element of DBS method, in order th transfer the vertical load on horizontal member to the column during the construction or in service, developed ${\sharp}$ shaped double beam-column connection is dominated by shear failure in the complicated state of multi-axial stresses. In this study, in order to check the shear-failure mechanism of ${\sharp}$ shaped connection of double beam-column and an increase of shear internal force with the thickness of the steel plate. 7 specimens were made and one-way static tests. All of the specimens were subjected to brittle failure. Constraint of slab will increase its shear strength by 1.06${\sim}$1.48 times. Shear strength of slabs with different constraints steel plate in two-way increase more than which are same. So the slab with different constraints steel plate will be more effective.

  • PDF

Hysteretic Behavior of RC Beam-Column Joint for High Strength Structures using Belite Cement (베라이트 시멘트를 이용한 고강도 철근콘크리트 보-기둥 접합부의 이력특성)

  • 배흥한;이상원;윤정배;김기수;이세웅
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.582-588
    • /
    • 1998
  • The experimental study for the interior beam-column joint for high strength conccrete using Belite cement is presented. Test parameters are compressive strength, flexual strength ratio and joint shear stresslevel. The results from cyclic loading tests show different behaviors from the various parameters. Also, The different behaviors on beam-column joint can be achived by the different concrete strength.

  • PDF

Structural Performance Evaluation of Reinforced Concrete Shear Walls with Various Connection Type Under Load Reversals. (반복하중을 받는 철근콘크리트 전단벽체의 접합방식에 따른 구조성능 평가)

  • 신종학;하기주;권중배;전찬목
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.513-518
    • /
    • 1997
  • In this study, nine reinforced concrete infilled frames involved bare frames were tested during vertical and cyclic loads simultaneously. This test programs were carried to investigate the horizontal strength and the crack propagation in variance with hoop reinforcement ratio. All specimens were modeling in one-third scale size. In this experimental program structural performance of reinforced concrete shear wall were focus at connection types. Based on the test results, the following conclusions are made. In the boundary column member of reinforced concrete shear wall, increasing the ratio of hoop bar in two or three times, in the fully babel type, the shear and horizontal strength of specimens were increased 1.1-1.2 times than that of fully rigid frame. And infilled shear wall specimen were increased 1.17-1.27 times than that. Fully rigid babel type shear wall specimens were increased 5.7~8.0 times, and infilled shear wall specimens were increased about 4.0~5.6 times than that of infilled shear wall specimens.

  • PDF

Design in shear of reinforced concrete short columns

  • Moretti, M.L.;Tassios, T.P.
    • Earthquakes and Structures
    • /
    • v.4 no.3
    • /
    • pp.265-283
    • /
    • 2013
  • This research was prompted by the paucity of specific code provisions regarding the design of short columns for shear. The purpose of this paper was to investigate whether the use of the normal shear design procedure of various codes may or may not be applied to reliably calculate the shear strength of short columns. Provisions of the codes American ACI 318M-08, Canadian CSA A23.3-04, Japanese AIJ Guidelines, New Zealand NZS 3101, European EN 1998 (EC8) parts 1 and 3, combined with EN 1992-1-1 (EC2), and draft fib Model Code 2010, as well as a strut-and-tie model are applied on short columns tested under cyclic loading that failed in shear. Actual shear resistances are compared to predictions, and the resulting shortcomings of the codes are identified. EN1998-3 appears to be the only code among those considered that may be reliably applied to estimate the shear resistance of short columns. Further, the proposed strut-and tie model can be a useful tool for the detailed design and assessment of short columns.

Analysis on the Shear Behavior of Existing Reinforced Concrete Beam-Column Structures Infilled with U-Type Precast Wall Panel (U형 프리캐스트 콘크리트 벽패널로 채운 기존 철근 콘크리트 보-기둥 구조물의 전단 거동 분석)

  • Ha, Soo-Kyoung;Son, Guk-Won;Yu, Sung-Yong;Ju, Ho-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.18-28
    • /
    • 2015
  • The purpose of this study is to develop a new seismic resistant method by using precast concrete wall panels for existing low-rise, reinforced concrete beam-column buildings such as school buildings. Three quasi-static hysteresis loading tests were performed on one unreinforced beam-column specimen and two reinforced specimens with U-type precast wall panels. The results were analyzed to find that the specimen with anchored connection experienced shear failure, while the other specimen with steel plate connection principally manifested flexural failure. The ultimate strength of the specimens was determined to be the weaker of the shear strength of top connection and flexural strength at the critical section of precast panel. In this setup of U-type panel specimens, if a push loading is applied to the reinforced concrete column on one side and push the precast concrete panel, a pull loading from upper shear connection is to be applied to the other side of the top shear connection of precast panel. Since the composite flexural behavior of the two members govern the total behavior during the push loading process, the ultimate horizontal resistance of this specimen was not directly influenced by shear strength at the top connection of precast panel. However, the RC column and PC wall panel member mainly exhibited non-composite behavior during the pull loading process. The ultimate horizontal resistance was directly influenced by the shear strength of top connection because the pull loading from the beam applied directly to the upper shear connection. The analytical result for the internal shear resistance at the connection pursuant to the anchor shear design of ACI 318M-11 Appendix-D, agreed with the experimental result based on the elastic analysis of Midas-Zen by using the largest loading from experiment.

Seismic performance and optimal design of framed underground structures with lead-rubber bearings

  • Chen, Zhi-Yi;Zhao, Hu;Lou, Meng-Lin
    • Structural Engineering and Mechanics
    • /
    • v.58 no.2
    • /
    • pp.259-276
    • /
    • 2016
  • Lead-rubber bearings (LRBs) have been used worldwide in seismic design of buildings and bridges owing to their stable mechanical properties and good isolation effect. We have investigated the effectiveness of LRBs in framed underground structures on controlling structural seismic responses. Nonlinear dynamic time history analyses were carried out on the well-documented Daikai Station, which collapsed during the 1995 Hyogoken-Nanbu earthquake. Influences of strength ratio (ratio of yield strength of LRBs to yield strength of central column) and shear modulus of rubber on structural seismic responses were studied. As a displacement-based passive energy dissipation device, LRBs reduce dynamic internal forces of framed underground structures and improve their seismic performance. An optimal range of strength ratios was proposed for the case presented. Within this range, LRBs can dissipate maximum input earthquake energy. The maximum shear and moment of the central column can achieve more than 50% reduction, whereas the maximum shear displacement of LRBs is acceptable.

Dynamic Deformation Characteristics of Granite Weathered Soils Using RC/TS Tests (공진주/비틂전단시험을 이용한 화강풍화지반의 동적변형특성)

  • Kim, Dong-Soo;Ko, Dong-Hee;Youn, Jun-Ung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.1
    • /
    • pp.35-46
    • /
    • 2004
  • In Korea, around one - third of the country is occupied by granite, and granite weathered soils are widely distributed. Most of the research on this soil has been performed using reconstituted specimens because of the extreme difficulty of undisturbed sampling due to the sensitive particle structures. Therefore, the comparisons of deformational characteristics, which is expressed in terms of shear and Young's moduli and damping ratio, obtained from the undisturbed and reconstituted specimens are important for the reliable understanding of soil behavior. In this study, the resonant column and torsional shear tests were performed on granite weathered soils in Korea, and the deformation characteristics of undisturbed and reconstituted soil on granite weathered soils were evaluated and compared.

  • PDF