• Title/Summary/Keyword: column shear

Search Result 986, Processing Time 0.028 seconds

Comparison on the Failure Mechanism of Punching Shear in the Reinforced Concrete (철근 콘크리트의 뚫림전단 파괴메카니즘에 과한 비교)

  • 이주나;연규원;이호준;박찬수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.533-538
    • /
    • 2000
  • In R.C. flat slab system, a brittle punching failure is a very fatal problem. But there is no generally well-defined answer to the problem and there are wide differences in current practical design codes. therefore, in this study, the factors affecting to punching failure mechanism have been studied to find out the punching shear behavior in R.C. flat slabs by comparing other investigations and practical design codes. Therefore, In this study, the factors affecting to punching failure mechanism have been studied to find out the punching shear behavior in R.C. flat slabs by comparing other investigations and practical design codes. The conclusions in this study are summarized as follows; 1) The factors affecting to punching shear are concrete strength ($f_\alpha$), ratio of column side length to slab depth (c/d), ratio of distance from column center to radial contraflexure (l/d), yield strength of steel ($f_y$), flexural reinforcement ratio ($\rho$) and size effects. 2) It is shown that th use of $\surd{f_{ck}}$in applying($f_\alpha$ to punching shear strength estimation may be more sensitive in high concrete strength. 3) The effects of l/d, ($f_y$, size are no clear in the punching failure mechanism, so in the future, it should be investigated with the effects of various composed load.

  • PDF

Numerical Study on Seismic Resistance of Flat Plate-Column Connections (플랫 플레이트-기둥 접합부의 내진성능에 대한 해석연구)

  • 박홍근;최경규;황영현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.891-896
    • /
    • 2002
  • Flat plate is susceptible to punching shear failure at the slab-column connection, which may cause catastrophic structural collapse. To prevent such brittle failure, strength and ductility of the connection should be ensured. However, since it is very difficult to experimentally simulate the actual load and boundary conditions of the flat plate system, it is not easy to obtain reliable information and data regarding to the strength and ductility of the flat plate-column connection. In the present study, numerical studies were performed for interior connections of continuous flat plate. The results were compared with the existing experiments, and the variations of bending moment, shear, torsional moment around the connection were investigated. Based on the findings of the numerical studies, the disadvantages of current design methods were discussed.

  • PDF

A Study on Strength of Flat Plate-Column Connections (플랫플레이트-기둥 접합부 강도발현에 관한 연구)

  • Kang Su Min;Lee Do Bum;Kim Ook Jong;Lee Ji Woong;Park Hong Gun;Lee Li Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.213-216
    • /
    • 2005
  • A numerical analysis was performed for interior connections of continuous flat plate to analyze the effect of design parameters such as column section shape, gravity load and slab span on the behavioral characteristics of the connections. Through the parametric study, the variations of shear stress distribution around the connection were investigated. According to the result of numerical analysis, as the length of the cross section of column in the direction of lateral load increases and gravity load increases, the effective area and the maximum shear strength providing the torsional resistance decrease considerably. And as the slab span loaded with relatively large gravity load increases, the negative moment around the connection increases and therefore the strength of connection against unbalanced moment decreases.

  • PDF

Design of boundary combined footings of trapezoidal form using a new model

  • Rojas, Arnulfo Luevanos
    • Structural Engineering and Mechanics
    • /
    • v.56 no.5
    • /
    • pp.745-765
    • /
    • 2015
  • This paper presents the design of reinforced concrete combined footings of trapezoidal form subjected to axial load and moments in two directions to each column using a new model to consider soil real pressure acting on the contact surface of the footing; such pressure is presented in terms of an axial load, moment around the axis "X" and moment around the axis "Y" to each column. The classical model considers an axial load and moment around the axis "X" (transverse axis) applied to each column, and when the moments in two directions are taken into account, the maximum pressure throughout the contact surface of the footing is considered the same. The main part of this research is that the proposed model considers soil real pressure and the classical model takes into account the maximum pressure, and also is considered uniform. We conclude that the proposed model is more suited to the real conditions and is more economical.

The Vibration Performance Experiment of Tuned Liquid Damper and Tuned Liquid Column Damper

  • Kim Young-Moon;You Ki-Pyo;Cho Ji-Eun;Hong Dong-Pyo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.795-805
    • /
    • 2006
  • Tuned Liquid damper and Tuned Liquid Column are kind of passive mechanical damper which relies on the sloshing of liquid in a rigid tank for suppressing structural vibrations. TLD and TLCD are attributable to several potential advantages - low costs ; easy to install in existing structures : effective even for small-amplitude vibrations. In this paper, the shaking table experiments were conducted to investigate the characteristics of water sloshing motion in TLD (rectangular, circular) and TLCD. The parameter obtained from the experiments were wave height, base shear force and energy dissipation. The shaking table experiments show that the liquid sloshing relies on amplitude of shaking table and frequency of tank. The TLCD was more effective control vibration than TLD.

The Effect of Anchorage with Shear Reinforcement in Flat Plate System (플랫 플레이트 구조에서 전단보강체의 정착성능에 따른 전단보강효과)

  • Choi, Chang-Sik;Bae, Baek-Il;Choi, Yun-Cheul;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.667-675
    • /
    • 2012
  • Flat plate are being used more in buildings requiring a high level of technical installations or in buildings needing changeable room arrangements during their life time such as office buildings. The main problem in flat plate is its weak resistance against a punching failure at its slab-column connections. Therefore, in this research, an experimental study on full-scale interior slab-column connection was performed. Three types of shear reinforcements were tested to prevent brittle punching shear failure that could lead to collapse of the structure. A series of four flat plate specimens including a specimen without shear reinforcement and three specimens with shear reinforcements were tested. The slabs were tested up to failure using monotonic vertical shear loading. The presences of the shear reinforcements substantially increased punching shear capacity and ductility of the interior slabcolumn connections. The test results showed that a slab that did not have enough bond length failed before shear reinforcement yielded due to anchorage slip. Also, FEM analyses were performed to study an effect of slab thickness and concrete compressive strength on the flat plate slab. The analytical study results were used to propose a method to calculate performance capacity of shear reinforcement in slab-column connection.

Strength of Interior Plat Plate-Column Connections Subjected to Unbalanced Moment (불균등 휨모멘트를 받는 플랫 플레이트-기둥 접합부의 강도산정모델)

  • 최경규;박홍근
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.961-972
    • /
    • 2002
  • Flat plate structures under lateral load are susceptible to the brittle shear failure of plate-column connection. To prevent such brittle failure, strength and ductility of the connection should be ensured. However, according to previous studies, current design methods do not accurately estimate the strength of plate-column connection. In the present study, parametric study using nonlinear finite element analysis was performed for interior connections. Based on the numerical results, a design method for the connection was developed. At the critical sections around the connection coexist flexural moment and shear developed by lateral and gravity loads, and maximum allowable eccentric shear stresses were proposed based on the interactions between the flexural moment and shear, The proposed method can precisely predict the strength of the connection, compared with the current design provisions. The predictability of the proposed method was verified by the comparisons with existing experiments and nonlinear numerical analyses.

Seismic behavior of reinforced concrete T-shaped columns under compression-bending-shear and torsion

  • Ping, Chen Zong;Weiwei, Su;Yang, Yang
    • Earthquakes and Structures
    • /
    • v.20 no.4
    • /
    • pp.431-444
    • /
    • 2021
  • T-shaped column is usually used as side column in buildings, which is one of the weak members in structural system. This paper presented a quasi-static cyclic loading experiment of six specimens of reinforced concrete (RC) T-shaped columns under compression-flexure-shear-torsion combined loadings to investigate the effect in the ratio of torsion to moment (T/M) and axial compression ratio (n) and height-thickness ratio of flange plate (φ) on their seismic performance. Based on the test results, the failure characteristics, hysteretic curves, ductility, energy dissipation, stiffness degradation and strength degradation were analyzed. The results show that the failure characteristics of RC T-shaped columns mainly depend on the ratio of torsion to moment, which can be divided into bending failure, bending-torsion failure and shear-torsion failure. With the increase of T/M ratio, the torsion ductility coefficient increased, and in a suitable range, the torsion and horizontal displacement ductility coefficient of RC T-shaped columns could be effectively improved with the increase of axial compression ratio and the decrease of height-thickness ratio of flange plate. Besides, the energy dissipation capacity of the specimens mainly depended on the bending and shear energy dissipation capacity. On the other hand, the increase of axial compression ratio and the ratio of torsion to moment could accelerate the torsional and bending stiffness degradation of RC T-shaped columns. Moreover, the degradation coefficient of torsion strength was between 0.80 and 0.98, and that of bending strength was between 0.75 and 1.00.

A Study for Shear Deterioration of Reinforced Concrete Beam-Column Joints Failing in Shear after Flexural Yielding of Adjacent Beams (보의 휨항복 후 접합부가 파괴하는 철근콘크리트 보-기둥 접합부의 전단내력 감소에 대한 해석적 연구)

  • Park, Jong-Wook;Yun, Seok-Gwang;Kim, Byoung-Il;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.399-406
    • /
    • 2012
  • Beam-column joints are generally recognized as the critical regions in the moment resisting reinforced concrete (RC) frames subjected to both lateral and vertical loads. As a result of severe lateral load such as seismic loading, the joint region is subjected to horizontal and vertical shear forces whose magnitudes are many times higher than in column and adjacent beam. Consequently, much larger bond and shear stresses are required to sustain these magnified forces. The critical deterioration of potential shear strength in the joint area should not occur until ductile capacity of adjacent beams reach the design demand. In this study, a method was provided to predict the deformability of reinforced concrete beam-column joints failing in shear after the plastic hinges developed at both ends of the adjacent beams. In order to verify the deformability estimated by the proposed method, an experimental study consisting of three joint specimens with varying tensile reinforcement ratios was carried out. The result between the observed and predicted behavior of the joints showed reasonably good agreement.

Influence of Column Aspect Ratio on the Hysteretic Behavior of Slab-Column Connection (슬래브-기둥 접합부의 이력거동에 대한 기둥 형상비의 영향)

  • Choi, Myung-Shin;Cho, In-Jung;Ahn, Jong-Mun;Shin, Sung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.515-525
    • /
    • 2007
  • In this investigation, results of laboratory tests on four reinforced concrete flat plate interior connections with elongated rectangular column support which has been used widely in tall residential buildings are presented. The purpose of this study is to evaluate an effect of column aspect ratio (${\beta}_c={c_1}/{c_2}$=side length ratio of column section in the direction of lateral loading $(c_1)$ to the direction of perpendicular to $c_1$) on the hysteretic behavior under earthquake type loading. The aspect ratio of column section was taken as $0.5{\sim}3\;(c_1/c_2=1/2,\;1/1,\;2/1,\;3/1)$ and the column perimeter was held constant at 1200mm in order to achieve nominal vertical shear strength $(V_c)$ uniformly. Other design parameters such as flexural reinforcement ratio $(\rho)$ of the slab and concrete strength$(f_{ck})$ was kept constant as ${\rho}=1.0%$ and $f_{ck}=40MPa$, respectively. Gravity shear load $(V_g)$ was applied by 30 percent of nominal vertical shear strength $(0.3V_o)$ of the specimen. Experimental observations on punching failure pattern, peak lateral-load and story drift ratio at punching failure, stiffness degradation and energy dissipation in the hysteresis loop, and steel and concrete strain distributions near the column support were examined and discussed in accordance with different column aspect ratio. Eccentric shear stress model of ACI 318-05 was evaluated with experimental results. A fraction of transferring moment by shear and flexure in the design code was analyzed based on the test results.