• 제목/요약/키워드: column effective length

검색결과 107건 처리시간 0.029초

Effective length factor for columns in braced frames considering axial forces on restraining members

  • Mahini, M.R.;Seyyedian, H.
    • Structural Engineering and Mechanics
    • /
    • 제22권6호
    • /
    • pp.685-700
    • /
    • 2006
  • The effective length factor is a familiar concept for practicing engineers and has long been an approach for column stability evaluations. Neglecting the effects of axial force in the restraining members, in the case of sway prevented frames, is one of the simplifying assumptions which the Alignment Charts, the conventional nomographs for K-Factor determination, are based on. A survey on the problem reveals that the K-Factor of the columns may be significantly affected when the differences in axial forces are taken into account. In this paper a new iterative approach, with high convergence rate, based on the general principles of structural mechanics is developed and the patterns for detection of the critical member are presented and discussed in details. Such facilities are not available in the previously presented methods. A constructive methodology is outlined and the usefulness of the proposed algorithm is illustrated by numerical examples.

Experimental study on partially-reinforced steel RHS compression members

  • Pinarbasi, Seval
    • Structural Engineering and Mechanics
    • /
    • 제63권3호
    • /
    • pp.385-400
    • /
    • 2017
  • This paper presents an experimental study on the behavior of axially-loaded steel RHS (rectangular hollow section) compression members that are partially reinforced along their lengths with welded steel plates. 28 slender column tests were carried out to investigate the effects of the slenderness ratio of the unreinforced member and the ratio of the reinforced length of the member to its entire length. In addition to the slender column tests, 14 stub-column tests were conducted to determine the basic mechanical properties of the test specimens under uniform compression. Test results show that both the compressive strength and stiffness of an RHS member can be increased significantly compared to its unreinforced counterpart even when only the central quarter of the member is reinforced. Based on the limited test data, it can be concluded that partial reinforcement is, in general, more effective in members with larger slenderness ratios. A simple design expression is also proposed to predict the compressive strength of RHS columns partially reinforced along their length with welded steel plates by modifying the provisions of AISC 360-10 to account for the partial reinforcement.

기둥단면형상에 따른 무량구조시스템 강성변화에 관한 연구 (A study on stiffness of flat-plate system according to column section shape)

  • 강수민;이지웅;김욱종;이도범
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.314-317
    • /
    • 2006
  • In the present study, design methodologies for effective width of slabs in slab-column connections were evaluated in comparison with the experimental results on the full-scale slab-column connections. The design methodologies are as follows: the methodology proposed by Jacob S. Grossman and the methodology proposed by Choi & Song. The former does not predict the stiffness change of the slab-column connection due to the change in the column section shape and the latter overestimates the stiffness when edge length of the column section in the loading direction is long. Accordingly, the equation to calculate the effective width of slabs should be modified to reflect the effect of the change in the column section shape.

  • PDF

아음속 유동장에 수직분사시 오리피스 내부유동 효과에 대한 연구 (Effects of Orifice Internal Flow on Transverse Injection into Subsonic Crossflows)

  • 김정훈;안규복;윤영빈
    • 한국추진공학회지
    • /
    • 제7권1호
    • /
    • pp.28-39
    • /
    • 2003
  • 본 연구에서는 캐비테이션과 수력튀김과 같은 유동 현상이 수직 분사된 액체 제트의 분열에 미치는 영향을 살펴보았다. 오리피스 지름, 오리피스의 길이대 지름비, 오리피스 입구의 형상 그리고 배출 압력을 변화시켜가며 내부 유동 변화를 살피고 수직분사시 액주의 분열 거리와 제적을 구하여 기존의 연구 결과와 비교하고 분석하였다. 실험 결과 곡률이 없는 경우(sharp edged)의 오리피스에서는 어느 정도 이상의 압력에서 모두 캐비테이션이 발생하였고 곡률이 없는 경우 중 길이대 지름비가 작은 오리피스에선 캐비테이션 성장에 의한 수력튀김(hydraulic flip)현상도 관찰할 수 있었다 수직분사시 캐비테이션이 성장할수록 그리고 수력튀김 현상이 나타날 때 액주의 분열거리는 상당히 감소한다는 것을 알 수 있었다. 하지만 곡률이 있는 경우와 없는 경우 모두 유량 계수를 고려한 유효지름과 유효 모멘텀 플럭스 비에 대해 거의 같은 궤적 형상을 나타낸다는 것을 알 수 있었다.

Seismic behavior of steel tube reinforced concrete bridge columns

  • Tian, Tian;Qiu, Wen-liang;Zhang, Zhe
    • Steel and Composite Structures
    • /
    • 제28권1호
    • /
    • pp.63-71
    • /
    • 2018
  • This paper reports an experimental study that was accomplished to assess the seismic behavior of steel tube reinforced concrete bridge columns (SBCs). The motivation of this study was to verify a supposition that the core steel tube may be terminated at a rational position in the column to minimize the material cost while maintaining the seismic behavior of this composite column. Four SBC specimens were tested under combined constant axial load and cyclic reversed lateral loads. The unique variable in the test matrix was the core steel tube embedment length, which ranged from 1/3 to 3/3 of the column effective height. It is observed that SBCs showed two distinctly different failure patterns, namely brittle shear failure and ductile flexural failure. Tests results indicate that the hysteretic responses of SBCs were susceptible to the core steel tube embedment length. With the increase of this structural parameter, the lateral strength of SBC was progressively improved; the deformability and ductility, however, exhibited a tendency of first increase and then decrease. It is also found that in addition to maintained the rate of stiffness degradation and cumulative energy dissipation basically unchanged, both the ductility and deformability of SBC were significantly improved when the core steel tube was terminated at the mid-height of the column, and these were the most unexpected benefits accompanied with material cost reduction.

Effects of shear deformation on the effective length of tapered columns with I-section for steel portal frames

  • Li, Guo-Qiang;Li, Jin-Jun
    • Structural Engineering and Mechanics
    • /
    • 제10권5호
    • /
    • pp.479-489
    • /
    • 2000
  • Based on the stiffness equation of the tapered beam element involving the effects of axial force and shear deformation, numerical investigations are carried out on elastic instability for web-linearly tapered columns with I-section of steel portal frames. Effects of shear deformation on the effective length of the tapered columns with I-section are studied. An efficient approach for determining the effective length of the tapered portal frame columns considering effects of shear deformation is proposed.

편심축하중을 받는 강섬유보강 콘크리트 기둥의 실험적 연구 (An Experimental Study on Eccentrically Loaded Steel Fiber Reinforced Concrete Columns)

  • 박홍용;안영진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회 논문집(II)
    • /
    • pp.857-860
    • /
    • 2000
  • An experimental study on the behavior of Steel Fiber Reinforced Concrete Columns under eccentric compression are presented. Forth-one columns were tested; the variables were column type, eccentricity of load, fiber contents, and longitudinal reinforcement ratio. The column size was $250\times160$ mm in cross section with an effective length of 1150 mm. Eccentricity of load was varied in the range from 1/6 to 1/2 times the column depth. This paper is to provides a framework for basic understanding of the steel fiber concrete columns.

Stability analysis of semi-rigid composite frames

  • Wang, Jing-Feng;Li, Guo-Qiang
    • Steel and Composite Structures
    • /
    • 제7권2호
    • /
    • pp.119-133
    • /
    • 2007
  • Based on stability theory of current rigid steel frames and using the three-column subassemblage model, the governing equations for determining the effective length factor (${\mu}$-factor) of the columns in semirigid composite frames are derived. The effects of the nonlinear moment-rotation characteristics of beam-to-column connections and composite action of slab are considered. Furthermore, using a two-bay three-storey composite frame with semi-rigid connections as an example, the effects of the non-linear moment-rotation characteristics of connections and load value on the ${\mu}$-factor are numerically studied and the ${\mu}$-factors obtained by the proposed method and Baraket-Chen's method are compared with those obtained by the exact finite element method. It was found that the proposed method has good accuracy and can be used in stability analysis of semi-rigid composite frames.

기둥 단면형상에 따른 플랫플레이트-기둥 접합부 강도에 관한 수치해석연구 (Numerical Analysis on Strength of Interior Flat Plate-Column Connections according to Column Section Shape)

  • 강수민;김욱종;이도범;박홍근;천영수;이현호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.291-294
    • /
    • 2005
  • In the present study, a numerical analysis was performed for interior connections of continuous flat plate to analyze the effect of column section shape on the behavioral characteristics of the connections. For the purpose, a computer program for nonlinear FE analysis was developed, and the validity was verified. Through the parametric study, the variations of shear stress distribution around the connection were investigated. According to the result of numerical analysis, the column section shape has a serious effect on the behavior of the connections. As the length of the cross section of column in the direction of lateral load increases, the effective area and the shear strength at the sides providing the torsional resistance decrease considerably. Therefore the strength model for the flat plate-column connections should be modified by considering the effect of column section shape on the behavior of the connections.

  • PDF

Fuzzy logic based estimation of effective lengths of columns in partially braced multi-storey frames

  • Menon, Devdas
    • Structural Engineering and Mechanics
    • /
    • 제11권3호
    • /
    • pp.287-299
    • /
    • 2001
  • Columns in multi-storey frames are presently categorised as either braced or unbraced, usually by means of the stability index criterion, for estimating their effective length ratios by design aids such as 'alignment charts'. This procedure, however, ignores the transition in buckling behaviour between the braced condition and the unbraced one. Hence, this results in either an overestimation or an underestimation of effective length estimates of columns in frames that are in fact 'partially braced'. It is shown in this paper that the transitional behaviour is gradual, and can be approximately modelled by means of a 'fuzzy logic' based technique. The proposed technique is simple and intuitively agreeable. It fills the existing gap between the braced and unbraced conditions in present codal provisions.