• Title/Summary/Keyword: column/wall

Search Result 411, Processing Time 0.023 seconds

Study and design of assembled CFDST column-beam connections considering column wall failure

  • Guo, Lei;Wang, Jingfeng;Yang, T.Y.;Wang, Wanqian;Zhan, Binggen
    • Steel and Composite Structures
    • /
    • v.39 no.2
    • /
    • pp.201-213
    • /
    • 2021
  • Currently, there is a lack of research in the design approach to avoid column wall failure in the concrete filled double skin steel tubular (CFDST) column-beam connections. In this paper, a finite element model has been developed and verified by available experimental data to analyze the failure mechanism of CFDST column-beam connections. Various finite element models with different column hollow ratios (χ) were established. The simulation result revealed that with increasing χ the failure mode gradually changed from yielding of end plate, to local failure of the column wall. Detailed parametric analyses were performed to study the failure mechanism of column wall for the CFDST column-beam connection, in which the strength of sandwiched concrete and steel tube and thickness of steel tube were incorporated. An analytical model was proposed to predict the moment resistance of the assembled connection considering the failure of column wall. The simulation results indicate that the proposed analytical model can provided a conservative prediction of the moment resistance. Finally, an upper bound value of χ was recommend to avoid column wall failure for CFDST column-beam connections.

Experimental Study of Strength and Ductility on Masonry Wall Frame and Shear Wall Frame Subjected to Cyclic Lateral Loading (반복-횡력을 받는 조적벽 골조와 전단벽 골조의 내력 및 연성에 관한 실험적 연구)

  • Lee, Ho;Byeon, Sang-Min;Jung, Hwan-Mok;Lee, Taick-Oun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.2
    • /
    • pp.83-91
    • /
    • 2013
  • The core aim of this dissertation is to empirically scrutinize a strength characteristic of beam-column frame subjected to the cyclic lateral load, a beam-column frame of un-reinforced masonry wall, and a shear wall frame. First and foremost, I embark upon making three prototypes vis-$\grave{a}$-vis this research. By conducting this process, I touch on an analysis of cyclic behavior and a damage characteristic of the beam-column frame, the beam-column frame of un-reinforced masonry wall, and the shear wall frame. What is more, through the previous procedure, the next part delves into the exact stress transfer path and the destructive mechanism to examine how much and how strong the beam-column frame of un-reinforced Masonry Wall does have a resistance capacity against earthquake in all the architecture constructed by the above-mentioned frame, as well as school buildings. In addition to the three prototypes, two more experimental models, a beam-column frame and shear wall frame, are used to compare with the beam-column frame of un-reinforced masonry wall. Lastly, the dissertation will suggest some solutions to improve the resistance capacity against earthquake regarding all constructions built with non bearing wall following having examining precisely all the analysis with regard to not only behavior properties and the damage mechanism of the beam-column frame and the beam-column frame of un-reinforced Masonry Wall but also the resistance capacity against earthquake of non bearing wall and school buildings.

STUDY OF INTERNAL RECYCLE DISTRIBUTION AND HEAT TRANSFER EFFECT FOR OPTIMAL DESIGN OF DIVIDING WALL DISTILLATION COLUMNS

  • Lee, Ki-Hong;Lee, Moon-Yong;Jeong, Seong-Oh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2319-2324
    • /
    • 2003
  • This paper addresses the optimal design of dividing wall distillation column which is rapidly applied in a variety of chemical processes over recent several years because of its high energy saving efficiency. A general dividing wall column model which can cope with the heat transfer through the dividing wall is developed using rigorous computer simulation. Based on the simulation model, the effects of the internal recycle flow distribution around the dividing wall and the heat transfer across the dividing wall on overall system performance are investigated. An improved method is suggested to utilize the heat transfer through the wall to optimal column design. The suggested method is compared with the existing method via. simulation study and shows more improved energy saving result. Several control strategies for the divided wall column are tested and the optimal control strategy is propose

  • PDF

Investigation of short column effect of RC buildings: failure and prevention

  • Cagatay, Ismail H.;Beklen, Caner;Mosalam, Khalid M.
    • Computers and Concrete
    • /
    • v.7 no.6
    • /
    • pp.523-532
    • /
    • 2010
  • If an infill wall in a reinforced concrete frame is shorter than the column height and there is no initial gap between the column and the infill wall, the short column effect can occur during an earthquake shaking. This form of damage is frequently observed in many earthquake-damaged buildings all around the world and especially in Turkey. In this study, an effective method, which consists of placing additional infill wall segments surrounding the short column, to prevent this type of failure is examined. The influence of adding infill wall in the reduction of the shear force in the short column is also investigated. A parametric study is carried out for one-storey infilled frames with one to five bays using the percentage of the additional infill wall surrounding the short column and the number of spans as the parameters. Then the investigation is extended to a case of a multistorey building damaged due to short column effect during the 1998 Adana-Ceyhan earthquake in Turkey. The results show that the addition of the infill walls around the potential short columns is an effective way to significantly reduce the shear force.

Internal Recycle Distribution and Heat Transfer Effect for Optimal Design of Dividing Wall Distillation Columns (분리벽형 증류탑의 최적 설계를 위한 내부 순환량 분포와 전열 특성 연구)

  • 정성오;이기홍;이문용
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.3
    • /
    • pp.236-241
    • /
    • 2003
  • This paper addresses the optimal design of dividing wall distillation column which is rapidly applied in a variety of chemical processes over recent several years because of its high energy saving efficiency. A general dividing wall column model which can cope with the heat transfer through the dividing wall is developed using rigorous computer simulation. Based on the simulation model, the effects of the internal recycle flow distribution around the dividing wall and the heat transfer across the dividing wall on overall system performance are investigated. An improved column design method is suggested to utilize the heat transfer through the wall. The suggested method is compared with the existing method via simulation study in which the proposed design shows improved energy saving result.

Structural performance of reinforced concrete wall with boundary columns under shear load

  • Chu, Liusheng;He, Yuexi;Li, Danda;Ma, Xing;Cheng, Zhanqi
    • Structural Engineering and Mechanics
    • /
    • v.76 no.4
    • /
    • pp.479-489
    • /
    • 2020
  • This paper proposed a novel form of reinforced concrete (RC) shear wall confined with boundary columns. The structural effect of applying steel fiber reinforced concrete (SFRC) in the wall-column systems was studied. Three full-scale wall samples were constructed including two RC wall-RC column samples with different stirrup ratios and one RC wall-SFRC column sample. Low frequency cyclic testing was carried out to investigate the failure modes, hysteretic behavior, load-bearing capacity, ductility, stiffness degradation and energy dissipation. ABAQUS models were set up to simulate the structural behavior of tested samples, and good agreement was achieved between numerical simulation and experimental results. A further supplementary parametric study was conducted based on ABAQUS models. Both experimental and numerical results showed that increasing stirrup ratio in boundary columns did not affect much on load bearing capacity or stiffness degradation of the system. However, applying SFRC in boundary columns showed significant enhancement on load bearing capacity. Numerical simulation also shows that the structural performances of RC wall-SFRC column system were comparable to a wall-column system fully with SFRC.

Investigation of the Structural Modeling of Transfer Floor in Column-Supported Wall Structure (기둥지지-벽식구조에서 전이층의 구조해석모델링에 대한 연구)

  • Kim Young-Chan;Lee Jae-Jun
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.2 s.70
    • /
    • pp.79-83
    • /
    • 2005
  • Recently, column-supported wall structural system is frequently adopted in mixed-use high-rise buildings. Due to the sudden change of stiffness at the transfer floor proper load transfer and avoiding stress concentration are very important in column-supported wall structural system. It is revealed by many investigators that 2-dimensional analysis is not reliable and inappropriate selection of element for modeling may lead to erroneous result for gravitational loading. In this study, structural behavior of column-supported wall structure at transfer floor subject to lateral loading is compared by changing modeling methods.

The Study of Structure Design for Dividing Wall Distillation Column (분리벽형 증류탑의 구조 설계 및 분리 특성 연구)

  • Lee, Seung Hyun;Lee, Moon Yong
    • Korean Chemical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.39-45
    • /
    • 2007
  • This paper proposed a shortcut method for the structure design of dividing wall column based on the Fen-ske-Underwood equation by applying it on three conventional simple column configuration. It is shown that the proposed shortcut method can design the column structure including the feed tray, dividing wall section, and side-stream tray in a simple and efficient way in the initial design stage. Simulation study using HYSYS to compare the energy saving performance between the conventional sequential two column system and the dividing wall column designed by the proposed method shows that the proposed dividing wall column system saves from 16% to 65% more over the condepends on the composition of intermediate component while the optimal energy consumption pattern to internal flow distribution on the dividing wall section is characterized by the ESI factor of the feed mixture.

Estimation of Maximum Member Force in Basement Wall according to Stiffness and Aspect Ratios of Wall and Column (벽체와 기둥의 강성비와 형상비에 따른 지하외벽의 최대부재력 산정)

  • Young-Chan Kim;Dong-Gun Kim
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.3
    • /
    • pp.118-122
    • /
    • 2002
  • A numerical study using linear finite element analysis is performed to investigate the behavior of basement wall subject to soil and water pressure. Currently, structural design of basement wall is based on the assumption for boundary condition of plate, which may lead to the erroneous results. In this study, parametric studies are performed to investigate the variation of moment and shear force according to column-to-wall stiffness ratios and aspect ratios. Scaled factors applicable to the design of basement wall are proposed with the illustration of desist examples.

A study of the infill wall of the RC frame using a quasi-static pushover analysis

  • Mo Shi;Yeol Choi;Sanggoo Kang
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.455-464
    • /
    • 2023
  • Seismologists now suggest that the earth has entered an active seismic period; many earthquake-related events are occurring globally. Consequently, numerous casualties, as well as economic losses due to earthquakes, have been reported in recent years. Primarily, significant and colossal damage occurs in reinforced concrete (RC) buildings with masonry infill wall systems, and the construction of these types of structures have increased worldwide. According to a report from the Ministry of Education in the Republic of Korea, many buildings were built with RC frames with masonry infill walls in the Republic of Korea during the 1980s. For years, most structures of this type have been school buildings, and since the Pohang earthquake in 2017, the government of the Republic of Korea has paid close attention to this social event and focused on damage from earthquakes. From a long-term research perspective, damage from structural collapse due to the short column effect has been a major concern, specifically because the RC frame with a masonry infill wall system is the typical form of structure for school buildings. Therefore, the short column effect has recently been a major topic for research. This study compares one RC frame with four different types of RC frames with masonry infill wall systems. Structural damage due to the short column effect is clearly analyzed, as the result of this research is giving in a higher infill wall system produces a greater shear force on the connecting point between the infill wall system and the column. The study is expected to be a useful reference for research on the short column effect in RC frames with masonry infill wall systems.