• Title/Summary/Keyword: colorectal cancer cell

Search Result 357, Processing Time 0.033 seconds

Mechanistic Studies of Cyclin-Dependent Kinase Inhibitor 3 (CDKN3) in Colorectal Cancer

  • Yang, Cheng;Sun, Jun-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.3
    • /
    • pp.965-970
    • /
    • 2015
  • Colorectal cancer is one of the most severe subtypes of cancer, and has the highest propensity to manifest as metastatic disease. Because of the lack of knowledge of events that correlate with tumor cell migration and invasion, few therapeutic options are available. The current study aimed to explore the mechanism of colorectal cancer in hope of identifying the ideal target for future treatment. We first discovered the pro-tumor effect of a controversial cell cycle regulator, cylin-dependent kinase inhibitor 3 (CDKN3), which is highly expressed in colorectal cancer, and the possible related signaling pathways, by bioinformatics tools. We found that CDKN3 had remarkable effects in suppressing colorectal cancer cell proliferation and migration, inducing cell cycle arrest and apoptosis in a colorectal cancer cell line, SW480 cells. Our study, for the first time, provided consistent evidence showing overexpression of cell cycle regulator CDKN3, in colorectal cancer. The in vitro studies in SW480 cells revealed a unique role of CDKN3 in regulating cellular behavior of colorectal cancer cells, and implied the possibility of targeting CDKN3 as a novel treatment for colorectal cancer.

Cell-based Immunotherapy for Colorectal Cancer with Cytokine-induced Killer Cells

  • Ji Sung Kim;Yong Guk Kim;Eun Jae Park;Boyeong Kim;Hong Kyung Lee;Jin Tae Hong;Youngsoo Kim;Sang-Bae Han
    • IMMUNE NETWORK
    • /
    • v.16 no.2
    • /
    • pp.99-108
    • /
    • 2016
  • Colorectal cancer is the third leading cancer worldwide. Although incidence and mortality of colorectal cancer are gradually decreasing in the US, patients with metastatic colorectal cancer have poor prognosis with an estimated 5-year survival rate of less than 10%. Over the past decade, advances in combination chemotherapy regimens for colorectal cancer have led to significant improvement in progression-free and overall survival. However, patients with metastatic disease gain little clinical benefit from conventional therapy, which is associated with grade 3~4 toxicity with negative effects on quality of life. In previous clinical studies, cell-based immunotherapy using dendritic cell vaccines and sentinel lymph node T cell therapy showed promising therapeutic results for metastatic colorectal cancer. In our preclinical and previous clinical studies, cytokine-induced killer (CIK) cells treatment for colorectal cancer showed favorable responses without toxicities. Here, we review current treatment options for colorectal cancer and summarize available clinical studies utilizing cell-based immunotherapy. Based on these studies, we recommend the use CIK cell therapy as a promising therapeutic strategy for patients with metastatic colorectal cancer.

Combination Effect of Nimotuzumab with Radiation in Colorectal Cancer Cells (대장암 세포에서 EGFR 저해제 Nimotuzumab의 방사선 병합 효과)

  • Shin, Hye-Kyung;Kim, Mi-Sook;Jeong, Jae-Hoon
    • Radiation Oncology Journal
    • /
    • v.28 no.3
    • /
    • pp.147-154
    • /
    • 2010
  • Purpose: To investigate the radiosensitizing effect of the selective epidermal growth factor receptor (EGFR) inhibitor nimotuzumab in human colorectal cancer cell lines. Materials and Methods: Four human colorectal cancer cell lines, HCT-8, LoVo, WiDr, and HCT-116 were treated with nimotuzumab and/or radiation. The effects on cell proliferation, viability, and cell cycle progression were measured by MTT, clonogenic survival assay, flow cytometry, and Western blot. Results: An immunoblot analysis revealed that EGFR phosphorylation was inhibited by nimotuzumab in colorectal cancer cell lines. Under these experimental conditions, pre-treatment with nimotuzumab increased radiosensitivity of colorectal cancer cell lines, except for cell line HCT-116. However, cell proliferation or cell cycle progression was not affected by the addition of nimotuzumab, irrespective of irradiation. Conclusion: Nimotuzumab enhanced the radiosensitivity of colorectal cancer cells in vitro by inhibiting EGFR-mediated cell survival signaling. This study provided a rationale for the clinical application of the selective EGFR inhibitor, nimotuzumab in combination with radiation in colorectal cancer cells.

Metformin Synergistically Potentiates the Antitumor Effects of Imatinib in Colorectal Cancer Cells

  • Lee, Jaeryun;Park, Deokbae;Lee, Youngki
    • Development and Reproduction
    • /
    • v.21 no.2
    • /
    • pp.139-150
    • /
    • 2017
  • Metformin is the most commonly prescribed anti-diabetic drug with relatively minor side effect. Substantial evidence has suggested that metformin is associated with decreased cancer risk and anticancer activity against diverse cancer cells. The tyrosine kinase inhibitor imatinib has shown powerful activity for treatment of chronic myeloid leukemia and also induces growth arrest and apoptosis in colorectal cancer cells. In this study, we tested the combination of imatinib and metformin against HCT15 colorectal cancer cells for effects on cell viability, cell cycle and autophagy. Our data show that metformin synergistically enhances the imatinib cytotoxicity in HCT15 cells as indicated by combination and drug reduction indices. We also demonstrate that the combination causes synergistic down-regulation of pERK, cell cycle arrest in S and $G_2/M$ phases via reduction of cyclin B1 level. Moreover, the combination resulted in autophagy induction as revealed by increased acidic vesicular organelles and cleaved form of LC3-II. Inhibition of autophagic process by chloroquine led to decreased cell viability, suggesting that induction of autophagy seems to play a cell protective role that may act against anticancer effects. In conclusion, our present data suggest that metformin in combination with imatinib might be a promising therapeutic option in colorectal cancer.

Anticancer Effect of COX-2 Inhibitor DuP-697 Alone and in Combination with Tyrosine Kinase Inhibitor (E7080) on Colon Cancer Cell Lines

  • Altun, Ahmet;Turgut, Nergiz Hacer;Kaya, Tijen Temiz
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.3113-3121
    • /
    • 2014
  • Colorectal cancer remains one of the most common types of cancer and a leading cause of cancer death worldwide. In this study, we aimed to investigate effects of DuP-697, an irreversible selective inhibitor of COX-2 on colorectal cancer cells alone and in combination with a promising new multi-targeted kinase inhibitor E7080. The HT29 colorectal cancer cell line was used. Real time cell analysis (xCELLigence system) was conducted to determine effects on colorectal cell proliferation, angiogenesis was assessed with a chorioallantoic membrane model and apoptosis was determined with annexin V staining. We found that DuP-697 alone exerted antiproliferative, antiangiogenic and apoptotic effects on HT29 colorectal cancer cells. For the antiproliferative effect the half maximum inhibition concentration ($IC_{50}$) was $4.28{\times}10^{-8}mol/L$. Antiangiogenic scores were 1.2, 0.8 and 0.5 for 100, 10 and 1 nmol/L DuP-697 concentrations, respectively. We detected apoptosis in 52% of HT29 colorectal cancer cells after administration of 100 nmol/L DuP-697. Also in combination with the thyrosine kinase inhibitor E7080 strong antiproliferative, antiangiogenic and apoptotic effects on HT29 colorectal cancer cells were observed. This study indicates that DuP-697 may be a promising agent in the treatment of colorectal cancer. Additionally the increased effects observed in the combination with thyrosine kinase inhibitor give the possibility to use lower doses of DuP-697 and E7080 which can avoid and/or minimize side effects.

Synthetic Homoisoflavane Derivatives of Cremastranone Suppress Growth of Colorectal Cancer Cells through Cell Cycle Arrest and Induction of Apoptosis

  • Shin, Ha-Eun;Lee, Seul;Choi, Yeram;Park, Sangkyu;Kwon, Sangil;Choi, Jun-Kyu;Seo, Seung-Yong;Lee, Younghee
    • Biomolecules & Therapeutics
    • /
    • v.30 no.6
    • /
    • pp.576-584
    • /
    • 2022
  • Colorectal cancer is diagnosed as the third most prevalent cancer; thus, effective therapeutic agents are urgently required. In this study, we synthesized six homoisoflavane derivatives of cremastranone and investigated their cytotoxic effects on the human colorectal cancer cell lines HCT116 and LoVo. We further examined the related mechanisms of action using two of the potent compounds, SH-19027 and SHA-035. They substantially reduced the cell viability and proliferation in a dose-dependent manner. Treatment with SH-19027 and SHA-035 induced cell cycle arrest at the G2/M phase and increased expression of p21 both of which are implicated in cell cycle control. In addition, the apoptotic cell population and apoptosis-associated marker expression were accordingly increased. These results suggest that the synthesized cremastranone derivatives have anticancer effects through the suppression of cell proliferation and induction of apoptosis. Therefore, the synthesized cremastranone derivatives could be applied as novel therapeutic agents against colorectal cancer.

Comparison of CXCL10 Secretion in Colorectal Cancer Cell Lines

  • Lee, Song Mi;Lee, Ji Eun;Ahn, Hye Rim;Choi, Myung Hyun;Yoon, Seo Young;Rhee, Man Hee;Baik, Ji Sue;Seo, You Na;Park, Moon-Taek;Kim, Sung Dae
    • Biomedical Science Letters
    • /
    • v.28 no.3
    • /
    • pp.200-205
    • /
    • 2022
  • Established cancer cell lines are widely used for developing biomarkers for the patient-specific treatment of colorectal cancer and predicting prognoses. However, cancer cell lines may exhibit different drug responses depending upon the characteristics of the cell line. Therefore, it is necessary to select a tumor cell line suitable for the purpose of the study by considering the cell characteristics. This study investigated the levels of CXCL10, which were recently been reported to play an important role in the outcome of tumor treatment, secreted by colon cancer cells. 2 × 105 cells/mL of each colorectal cancer cell was seeded into a 35 mm cell culture dish. After 24 h incubation, culture supernatant was used to determine the secreted CXCL10 levels. Among six colorectal cancer cell lines (HT-29, HCT116, CaCo-2, SW620, SW480, and CT26), Caco-2 cells showed the highest level of CXCL10 secretion. HT-29 cells showed the second-highest level of CXCL10 secretion. No significantly measurable level of CXCL10 secretion was detected in HCT116 cells. These results will be helpful in investigating the molecular basis of colorectal cancer.

Inhibitory Effect of Globefish Homogenate on the Growth of Caco-2 Human Colorectal Cancer Cells (복어 균질액의 Caco-2 인간 결장직장암세포 성장 억제 효과에 대한 연구)

  • Kim, Junghoon;Chung, Gujune;Kim, Jungho
    • KSBB Journal
    • /
    • v.32 no.3
    • /
    • pp.212-217
    • /
    • 2017
  • Colorectal cancer is a leading cause of cancer mortality worldwide. Many studies show that most cases of human colorectal cancer arise from adenomatous polyps, which are usually dysplastic, nonmalignant precursor lesions; however, accumulation of multiple somatic mutations leads some to develop into advanced adenoma, which ultimately progresses to an invasive colorectal cancer. Notwithstanding the efforts made to improve chemotherapy, most colorectal cancers are unresponsive to this form of treatment, and malignant colorectal cancers remain incurable. To reduce the incidence of colorectal cancer mortality, further studies to improve colorectal cancer treatment are needed. Here, we show that Globefish homogenate suppresses the growth of Caco-2 human colorectal cancer cells, and that the homogenate inhibits Caco-2 cell proliferation in a dose-dependent manner. These data suggest that Globefish homogenate may suppress colorectal cancer development.

Effects of a Multikinase Inhibitor Motesanib (AMG 706) Alone and Combined with the Selective DuP-697 COX-2 Inhibitor on Colorectal Cancer Cells

  • Kaya, Tijen Temiz;Altun, Ahmet;Turgut, Nergiz Hacer;Ataseven, Hilmi;Koyluoglu, Gokhan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.1103-1110
    • /
    • 2016
  • In the present study, we investigated the effects of motesanib (AMG 706), a multikinase inhibitor alone and in combination with DuP-697, an irreversible selective inhibitor of COX-2, on cell proliferation, angiogenesis, and apoptosis induction in a human colorectal cancer cell line (HT29). Real time cell analysis (RTCA, Xcelligence system) was used to determine the effects on colorectal cancer cell proliferation. Apoptosis was assessed with annexin V staining and angiogenesis was determined with chorioallantoic membrane model. We found that motesanib alone exerted antiproliferative, antiangiogenic and apoptotic effects on HT29 colorectal cancer cells. Combination with DUP-697 increased the antiproliferative, antiangiogenic and apoptotic effects. Results of this study indicate that motesanib may be a good choice in treatment of colorectal tumors. In addition, the increased effects of combination of motesanib with DuP-697 raise the possibility of using lower doses of these drugs and therefore avoid/minimize the dose-dependent side effects generally observed.

The Effect of Potassium Cyanate (KCN) on Radiation Treatment of the Colorectal Cancer Cell Line, HCT 116

  • Chang, Jeong Hyun
    • Biomedical Science Letters
    • /
    • v.19 no.2
    • /
    • pp.98-104
    • /
    • 2013
  • Radiation is one of the major therapy for the removal of cancer cells. The results of the radiation therapy depend on the radio-resistance of cancer cells. For the effective treatment in these radio-resistant cancers, the use of chemicals that act on cancer cells is known to enhance the cytotoxic effects of radiation therapy. In this study, I investigated the effect of potassium cyanate (KCN) on the irradiated-colorectal cancer cell line, HCT 116 cells. KCN induces the carbamylation of proteins and can change the biological activity of various human cells. To understand the effect of KCN on the radiosensitivity of HCT 116 cells, I examined alteration of the cell cycle, generation of reactive oxygen species (ROS), cell viability, apoptosis and intracellular signaling proteins in the irradiated cells with/without KCN treatment. Combination treatment caused significant increase in sub $G_0/G_1$ and ROS generation in HCT 116 cells. KCN inhibited the proliferation and cell viability in irradiated HCT 116 cells. KCN-induced apoptosis of irradiated cells was processed via the activation of caspase 3 and caspase 9. Apoptosis-associated signal proteins, including Bax and Bcl-2 were regulated by irradiation with KCN treatment. Taken together, these results may indicate that KCN enhances the radiosensitivity of radio-resistant cell and then has a synergistic effect on radiation therapy in colorectal cancer.