• Title/Summary/Keyword: color-invariant

Search Result 99, Processing Time 0.026 seconds

bat tracking in baseball broadcasting using CAMshift and Kalman filter (CAMshift와 칼만필터를 이용한 야구 중계화면에서의 배트 추적)

  • Jo, Kyeong-min;Cha, Eui-young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.695-698
    • /
    • 2015
  • In this paper proposes bat tracking in baseball broadcasting using CAMshift and Kalman filter. The bat is changing fast during the swing, the shape also continues to rotate. For this reason, to apply the CAMshift to self adjust the size of the search window in order to use the color information to the invariant of the bat. Because it uses the color information if there are objects of similar color to the background because of the interruption on the track narrows the search range in range of motion detection by using the MHI(Motion History Image). By applying a Kalman filter, limit changing on the size of the search window, and it can be obtained higher track accuracy. But, this proposed method was limited color change by light.

  • PDF

Face detection in compressed domain using color balancing for various illumination conditions (다양한 조명 환경에서의 실시간 사용자 검출을 위한 압축 영역에서의 색상 조절을 사용한 얼굴 검출 방법)

  • Min, Hyun-Seok;Lee, Young-Bok;Shin, Ho-Chul;Lim, Eul-Gyoon;Ro, Yong-Man
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.140-145
    • /
    • 2009
  • Significant attention has recently been drawn to human robot interaction system that uses face detection technology. The most conventional face detection methods have applied under pixel domain. These pixel based face detection methods require high computational power. Hence, the conventional methods do not satisfy the robot environment that requires robot to operate in a limited computing process and saving space. Also, compensating the variation of illumination is important and necessary for reliable face detection. In this paper, we propose the illumination invariant face detection that is performed under the compressed domain. The proposed method uses color balancing module to compensate illumination variation. Experiments show that the proposed face detection method can effectively increase the face detection rate under existing illumination.

  • PDF

Implementation of a Robust Visual Surveillance Algorithm under outdoor environment (옥외 환경에강인한 영상 감시알고리듬구현)

  • Jung, Yong-Bae;Kim, Tea-Hyo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.2
    • /
    • pp.112-119
    • /
    • 2009
  • This paper describes a robust visual surveillance algorithm under outdoor environment. One of the difficult problems for outdoor is to obtain effective updating process of background images. Because background images generally contain the shadows of buildings, trees, moving clouds and other objects, they are changed by lapse of time and variation of illumination. They provide the lowering of performance for surveillance system under outdoor. In this paper, a robust algorithm for visual surveillance system under outdoor is proposed, which apply the mixture Gaussian filter and color invariant property on pixel level to update background images. In results, it was showed that the moving objects can be detected on various shadows under outdoor.

  • PDF

Scale Invariant Single Face Tracking Using Particle Filtering With Skin Color

  • Adhitama, Perdana;Kim, Soo Hyung;Na, In Seop
    • International Journal of Contents
    • /
    • v.9 no.3
    • /
    • pp.9-14
    • /
    • 2013
  • In this paper, we will examine single face tracking algorithms with scaling function in a mobile device. Face detection and tracking either in PC or mobile device with scaling function is an unsolved problem. Standard single face tracking method with particle filter has a problem in tracking the objects where the object can move closer or farther from the camera. Therefore, we create an algorithm which can work in a mobile device and perform a scaling function. The key idea of our proposed method is to extract the average of skin color in face detection, then we compare the skin color distribution between the detected face and the tracking face. This method works well if the face position is located in front of the camera. However, this method will not work if the camera moves closer from the initial point of detection. Apart from our weakness of algorithm, we can improve the accuracy of tracking.

Genetic Programming based Illumination Robust and Non-parametric Multi-colors Detection Model (밝기변화에 강인한 Genetic Programming 기반의 비파라미터 다중 컬러 검출 모델)

  • Kim, Young-Kyun;Kwon, Oh-Sung;Cho, Young-Wan;Seo, Ki-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.6
    • /
    • pp.780-785
    • /
    • 2010
  • This paper introduces GP(Genetic Programming) based color detection model for an object detection and tracking. Existing color detection methods have used linear/nonlinear transformatin of RGB color-model and improved color model for illumination variation by optimization or learning techniques. However, most of cases have difficulties to classify various of colors because of interference of among color channels and are not robust for illumination variation. To solve these problems, we propose illumination robust and non-parametric multi-colors detection model using evolution of GP. The proposed method is compared to the existing color-models for various colors and images with different lighting conditions.

Invariant-Feature Based Object Tracking Using Discrete Dynamic Swarm Optimization

  • Kang, Kyuchang;Bae, Changseok;Moon, Jinyoung;Park, Jongyoul;Chung, Yuk Ying;Sha, Feng;Zhao, Ximeng
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.151-162
    • /
    • 2017
  • With the remarkable growth in rich media in recent years, people are increasingly exposed to visual information from the environment. Visual information continues to play a vital role in rich media because people's real interests lie in dynamic information. This paper proposes a novel discrete dynamic swarm optimization (DDSO) algorithm for video object tracking using invariant features. The proposed approach is designed to track objects more robustly than other traditional algorithms in terms of illumination changes, background noise, and occlusions. DDSO is integrated with a matching procedure to eliminate inappropriate feature points geographically. The proposed novel fitness function can aid in excluding the influence of some noisy mismatched feature points. The test results showed that our approach can overcome changes in illumination, background noise, and occlusions more effectively than other traditional methods, including color-tracking and invariant feature-tracking methods.

Invariant Classification and Detection for Cloth Searching (의류 검색용 회전 및 스케일 불변 이미지 분류 및 검색 기술)

  • Hwang, Inseong;Cho, Beobkeun;Jeon, Seungwoo;Choe, Yunsik
    • Journal of Broadcast Engineering
    • /
    • v.19 no.3
    • /
    • pp.396-404
    • /
    • 2014
  • The field of searching clothing, which is very difficult due to the nature of the informal sector, has been in an effort to reduce the recognition error and computational complexity. However, there is no concrete examples of the whole progress of learning and recognizing for cloth, and the related technologies are still showing many limitations. In this paper, the whole process including identifying both the person and cloth in an image and analyzing both its color and texture pattern is specifically shown for classification. Especially, deformable search descriptor, LBPROT_35 is proposed for identifying the pattern of clothing. The proposed method is scale and rotation invariant, so we can obtain even higher detection rate even though the scale and angle of the image changes. In addition, the color classifier with the color space quantization is proposed not to loose color similarity. In simulation, we build database by training a total of 810 images from the clothing images on the internet, and test some of them. As a result, the proposed method shows a good performance as it has 94.4% matching rate while the former Dense-SIFT method has 63.9%.

Content-based Image Retrieval using Color Ratio and Moment of Object Region (객체영역의 컬러비와 모멘트를 이용한 내용기반 영상검색)

  • Kim, Eun-Kyong;Oh, Jun-Taek;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.9B no.4
    • /
    • pp.501-508
    • /
    • 2002
  • In this paper, we propose a content-based image retrieval using the color ratio and moment of object region. We acquire an optimal spatial information by the region splitting that utilizes horizontal-vertical projection and dominant color. It is based on hypothesis that an object locates in the center of image. We use color ratio and moment as feature informations. Those are extracted from the splitted regions and have the invariant property for various transformation, and besides, similarity measure utilizes a modified histogram intersection to acquire correlation information between bins in a color histogram. In experimental results, the proposed method shows more flexible and efficient performance than existing methods based on region splitting.

Real-Time Rotation-Invariant Face Detection Using Combined Depth Estimation and Ellipse Fitting

  • Kim, Daehee;Lee, Seungwon;Kim, Dongmin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.2
    • /
    • pp.73-77
    • /
    • 2012
  • This paper reports a combined depth- and model-based face detection and tracking approach. The proposed algorithm consists of four functional modules; i) color-based candidate region extraction, ii) generation of the depth histogram for handling occlusion, iii) rotation-invariant face region detection using ellipse fitting, and iv) face tracking based on motion prediction. This technique solved the occlusion problem under complicated environment by detecting the face candidate region based on the depth-based histogram and skin colors. The angle of rotation was estimated by the ellipse fitting method in the detected candidate regions. The face region was finally determined by inversely rotating the candidate regions by the estimated angle using Haar-like features that were robustly trained robustly by the frontal face.

  • PDF

Interest Point Detection Using Hough Transform and Invariant Patch Feature for Image Retrieval

  • Nishat, Ahmad;An, Young-Eun;Park, Jong-An
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.1
    • /
    • pp.127-135
    • /
    • 2009
  • This paper presents a new technique for corner shape based object retrieval from a database. The proposed feature matrix consists of values obtained through a neighborhood operation of detected corners. This results in a significant small size feature matrix compared to the algorithms using color features and thus is computationally very efficient. The corners have been extracted by finding the intersections of the detected lines found using Hough transform. As the affine transformations preserve the co-linearity of points on a line and their intersection properties, the resulting corner features for image retrieval are robust to affine transformations. Furthermore, the corner features are invariant to noise. It is considered that the proposed algorithm will produce good results in combination with other algorithms in a way of incremental verification for similarity.

  • PDF