The color of objects varies with changes in illuminant color and viewing conditions. As a consequence, color boundaries are influenced by a large variety of imaging variables such as shadows, highlights, illumination, and material changes. Therefore, invariant color models are useful for a large number of applications such as object recognitions, detections, and segmentations. In this paper, we propose invariant color models. These color models are independent of the object geometry, object pose, and illumination. From these color models, color invariant edges are derived. To show the validity of the proposed invariant color models, some examples are given.
컴퓨터 비전 분야에서 영상 모자이킹 (Image Mosaicking)은 제한된 시야각의 카메라를 사용하여 획득한 여러 장의 중첩된 영역을 가지는 영상을 한 장의 영상으로 정합하여 나타내는 기법이다. 최근에는 연속된 영상에서 카메라의 기학학적인 움직임 때문에 발생하는 영상의 왜곡이나 밝기 차에 관계없이 정확한 정합을 수행하기 위해서 특징점을 기반으로 서술자를 구성하는 정합 방법이 많이 연구되고 있다. 그러나 대부분의 특징점 검출 알고리즘들은 영상의 밝기값 기반의 처리 과정을 수행하기 때문에 영상의 칼라 성분은 다르지만 밝기값이 비슷한 경우, 또는 동영상에서 시간의 흐름에 따라 광원이 변화하는 경우에는 광원의 영향에 따라 검출되는 특징점의 수와 각각의 지역 서술자의 특성이 변하여 정확한 대응점을 검출하는데 오류를 유발하게 된다. 이런 문제점을 해결하기 위해서 본 논문은 영상의 칼라 정보를 이용한 특징점 기반의 영상 모자이킹 방법을 제안하였다. 디지털 칼라 카메라로부터 획득한 디지털 값을 좁은 대역을 갖는 가상의 카메라 출력값으로 변환하여 물체의 분광 반사율 기반의 값으로 유도하고 이것을 광원의 변화에 불변하는 칼라 불변 값 (Color-Invariant Value)으로 정의하였다. 제안된 칼라 불변값의 유효성을 검증하기 위해서 시뮬레이션된 광원들과 Macbeth Color-Checker를 이용하여 확인하였으며, 실험결과에서 제안한 방법과 기존의 SIFT 알고리즘을 비교를 통해 제안된 방법의 정합율의 향상을 확인하였다.
대응점 정합은 컴퓨터 비전에서 중요한 작업 중에 하나지만 스케일, 조명, 시점이 변한 환경에서 대응점을 찾는 과정은 매우 어렵다. 대응점 정합 알고리즘인 SURF(Speeded Up Robust Features) 기법은 SIFT(Scale Invariant Feature Transform) 기법에 비해 정합 속도가 매우 빠르고 비슷한 정합 성능을 보여 널리 사용되고 있다. 하지만 SURF 기법은 흑백 영상과 지역 공간정보를 사용하기 때문에 유사한 패턴이 존재하는 영상에서 대응점의 정합 성능이 매우 떨어진다. 이런 문제점을 해결하기 위해 본 논문에서는 강인한 컬러 특징 정보와 광역적 특징 정보를 이용하는 확장 SURF 알고리즘을 제안한다. 제안하는 알고리즘은 비슷한 패턴이 존재하더라도 색상정보과 광역 공간 정보를 추가로 사용되기 때문에 대응점 매칭 성능을 크게 향상시킨다. 본 논문에서는 제안하는 방법의 우수성을 조명과 시점이 변화하고 유사한 패턴들을 갖는 영상들에 적용하여 기존의 방법들과 비교 실험함으로서 입증하였다.
최근 의료 영상 분석(Medical Image Analysis)이나 영상 검색(Image Retrieval)을 위한 전처리(Preprocessing) 단계로 영상 분석(Image Analysis)에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 영상 검색에서 색상 성분(Color Component)의 활용 방법을 제안하고자 한다. 이미지를 검색하기 위해 색상 성분을 기반으로 하고, 색상(Color)을 분석하기 위한 기법으로 CLCM(Color Level Co-occurrence Matrix)과 통계적 기법을 이용하고 있다. CLCM은 기하학적 회전 변환(Geometric Rotate Transform)을 통해서 색상 성분을 3차원 공간상에 투영(Projection)하여 공간 관계(Spatial Relationship)로부터 나타나는 분포를 해석하는 방법으로, 본 논문에서 제안하는 주제이다. CLCM은 색상 모델에서 만들어지는 2차원 히스토그램을 지칭하며 색상 모델의 기하학적인 회전 변환을 통해서 생성된다. 그리고 이를 분석하기 위한 방법으로 통계 기법을 활용하고 있다. CLCM과 유사하게 2차원 분포도를 사용하는 GLCM(Gray Level Co-occurrence Matrix)[1]과 불변 모멘트(Invariant Moment)[2,3] 같은 알고리즘은 2차원적인 데이터를 해석하기 위하여 기본적인 통계 기법을 활용하고 있다. 하지만 GLCM과 불변 모멘트가 각각의 도메인에 최적화되어 있다 하더라도 공간 좌표상에 존재하는 불규칙적인 데이터를 완전히 해석할 수는 없다. 즉 GLCM과 불변 모멘트는 기초 통계 기법만을 사용하고 있기 때문에 추출된 특징들의 신뢰성이 낮다는 것이다. 본 논문에서는 이러한 단점을 보완하여 공간 관계를 해석함과 동시에 데이터의 가중치를 해석하기 위해 전형적인 다변량 통계에서 사용하는 주성분 분석(Principal Component Analysis)[4,5]을 이용하고 있다. 그리고 데이터의 정확도를 높이기 위해서 3차원 공간상에 색상 성분을 투영하여 이를 회전시키면서 데이터의 특성을 다각도에서 추출하는 방법을 제시한다.
컴퓨터 기반의 영상 데이터베이스의 급격한 증가에 따라 영상 정보를 관리할 수 있는 시스템의 필요성이 증가하고 있다. 본 논문에서는 영상분할 알고리즘에 Active Contour, 칼라 특징으로 칼라 오토코렐로그램(Color Autocorrelogram), 질감 특징으로 CWT(Complex Wavelet Transform), 그리고 형태 특징으로 Hu 불변모멘트를 선택하여 이들을 효율적으로 추출하고 결합한 영역기반 다중 특징 영상검색 알고리즘을 제안한다. 칼라 오토코렐로 그램은 영상의 H(Hue), S(Saturation) 성분으로부터 추출 하였고, 질감 특징과 형태 및 위치 특징은 V(Value) 성분으로부터 추출하였다. 효율적인 유사도 측정을 위해 추출된 특징(오토코렐로그램, Hu 불변 모멘트, CWT 모멘트)을 결합하여 정확도와 재현율을 측정하였다. Corel DB 및 VisTex DB에 대한 실험 결과, 제안된 영상검색 알고리즘은 94.8%의 정확도와 90.7%의 재현율을 가지며 성공적으로 영상검색 시스템에 응용할 수 있다.
영상 정보의 이용도가 증가함에 따라 영상을 효율적으로 관리할 수 있는 시스템의 필요성이 증가하고 있다. 이에 따라, 본 논문에서는 색채 특징과 영상의 형태와 위치 정보의 효율적인 결합에 근거한 내용기반 영상 검색 엔진을 제안한다. 색채 특징으로는 색채의 공간적인 상관관계를 잘 나타내는 HSI 색채 히스토그램을 선택하였고, 형태와 위치 특징들은 HSI의 휘도 성분에서 불변 모멘트를 이용하여 추출하였다. 효율적인 유사도 측정을 위해 추출된 특징(색채 히스토그램, Hu 모멘트)을 결합하여 정확도를 측정하였다. http://www.freefoto.com에서 제공하는 DB를 사용하여 실험한 결과, 제안된 검색엔진은 93%의 정확도를 가지며 성공적으로 영상 검색에 사용될 수 있음을 보였다.
흑체의 온도 변화에 대한 영상의 색차를 줄이는 본질 영상은 단일 불변 방향을 검출하고 백색 장면 조명체를 기반으로 하기 때문에 실영상에 존재하는 다수의 불변 방향과 유색 장면 조명체에 취약하다. 이러한 문제를 해결하기 위해 본 논문에서는 ${\chi}$-색도 공간에서 ROI의 전방향프로젝션과 백색패치의 평행이동을 통해 불변 방향을 검출하는 본질 영상 획득 기법을 제안한다. 3차원 RGB 공간 분석의 어려움으로 인하여, 본 논문 또한 밝기가 고려되지 않은 ${\chi}$-색도 공간을 사용한다. 이 공간에서 유색 조명체의 효과는 백색패치의 평행이동을 통해 감소시키고, 색차에 따라 가상의 선분으로 나타나는 불변 방향은 ROI의 전방향 프로젝션을 통해 검출한다. 다수의 불변 방향을 고려하여 ROI 선택은 3D 히스토그램에서 빈도수에 의해 결정한다. 검출 후, 본질 영상은 불변 방향의 직교 방향으로의 프로젝션과 RGB영상으로의 역변환 과정을 통해 획득된다. 실험에서 Ebner가 제안한 데이터집합을 실험 영상으로 이용하였고, 불변 방향의 표준편차와 색항등성 측도를 평가 측도로 사용하였다. 제안한 기법의 실험 결과는 엔트로피 기법보다 불변 방향의 표준 편차가 낮았으며, 기존의 기법에 비해 색항등성이 2배 이상 높았다.
Face detection plays an important role in HCI and face recognition. In this paper, we propose a rotation-invariant real-time face detection algorithm for color images in complex background. It consists of four processing step: (1) motion detection, (2) skin color region filler, (3) Eyemap detector for rotated face, and (4) Adaboost face classifier. This system has been tested in in-door environments, such as office and achieves over 95% detection rate.
현재까지 다양한 영상 분할 방법들이 계속해서 제안되어 오고 있으나 특정한 제약조건이 설정되지 않은 일반적인 자연 환경의 조건 하에서 촬영된 영상으로부터 조명, 음영, 그리고 하이라이트 등과 같은 주변의 환경 요인에 영향을 받지 않고 강건하게 영상을 분할하는 작업은 여전히 매우 어려운 작업으로 알려져 있다. 본 논문에서는 이런 문제를 일정 부분해결하기 위해서 칼라 불변량을 이용한 환경 적응적인 영상 분할 방법을 제안한다. 제안된 방법에서는 W, C, U, N, H와 같은 여러 가지 칼라 불변량을 소개하고, 조명이나 음영, 그리고 하이라이트와 같은 영상이 촬영되는 주변 환경의 요인들을 자동으로 검출한다. 그리고 검출된 환경 요인에 최적으로 적합한 칼라 불변량을 선택하여 에지를 기반으로 영상을 효과적으로 분할한다. 본 논문의 실험 결과에서는 제안한 방법이 기존의 방법에 비해서 주변의 환경 변화에 강건하게 에지를 기반으로 영상을 분할하는 것을 보여준다. 본 논문에서 제안된 방법은 주위 환경에 상당수 독립적으로 동작하므로 환경에 강건한 에지 기반의 영상 분할이 필요한 여러 응용 시스템에서 유용하게 활용될 수 있을 것으로 기대한다.
차량 운전자 지원을 위한 연구에서 도로상에 위치한 교통 표지판은 운전자에게 아주 중요한 정보임에 틀림없다. 따라서 주행중인 차량에서 획득한 영상으로부터 실시간으로 교통 표지판을 검출하여 운전자에게 그 정보를 제공한다면 안전운전에 큰 도움이 될 것이다. 하지만 주행중인 차량으로부터 획득한 영상에는 차량과 노면의 진동에 의해 획득된 영상에 흐림 현상이 발생하고 또한 노이즈들이 포함되어 있어 정확한 표지판 검출이 어려운 문제점이 있다. 게다가 영상획득을 위한 촬영 각도나 날씨 등에 의해 교통 표지판의 고유한 색상과 모양이 서로 다르게 표현되는 문제점이 발생한다. 이를 해결하기 위해 본 논문에서는 도로 환경과 같은 다양한 조도 변화가 포함된 교통 표지판 영상들로부터 고유색상 정보를 분석하고 HSI 고유칼라 모델을 생성하고 이를 이용하여 교통 표지판의 후보 영역을 검출한다. 그리고 모양정보 분석을 위해 교통 표지판의 고유한 형태학적 정보를 표현할 수 있는 불변 모멘트 특징정보를 추출하여 SVM을 통해 최종 교통 표지판 영역을 검출하는 방법을 제안한다. 제안한 방법을 도로에서 획득한 영상에서 실험한 결과, 교통 표지판 검출율은 91%, 그리고 프레임당 처리 시간은 0.38초이며, 제안한 방법은 실시간 지능형 교통 안내 시스템에 유용하게 적용될 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.