• Title/Summary/Keyword: color-$X^2$

Search Result 649, Processing Time 0.026 seconds

Crystal Growth of Yb:YAG by Floating Zone Method and Their Optical Properties (부유대용융법에 의한 Yb-YAG 단결정 성장 및 광특성)

  • 이성영;김병호;정석종;유영문
    • Korean Journal of Crystallography
    • /
    • v.11 no.3
    • /
    • pp.151-156
    • /
    • 2000
  • Yb/YAG single crystals were grown from the melt composition of Y/sub 1-x/Yb/sub x/)₃Al/sub 5/O/sub 12/ where x equal to 5, 10, 15, 20, 25, 33, 50, 75 and 100 at % by floating zone method. Optimum growth parameters to get high quality single crystals were 3.5 mm/h of growth rate and 20 rpm of rotation rate under the N₂ atmosphere. After the growth, color of crystals was appeared with pale blue due to the lack of oxygen, but it was disappeared after annealing at 1450℃ for 2 hr. Absorption coefficients were linearly increased depending on the concentration of Yb/sup 3+/ ions. Broad emission band was measured in the range of 1020 to 1050 nm with the peak intensity at 1031 nm and 1051 nm because of ²F/sub 5/2/(1)→²F/sub 7/2/(3) and ²F/sub 5/2/(1)→²F/sub 7/2/(4) transition respectively. When Yb/sup 3+/ ions were substituted with high rates, there were tendency to decrease the measured fluorescent lifetime for Yb ions depending on the concentration of Yb/sup 3+/ ions.

  • PDF

Mineralogy of Cu-Co Ores from Democratic Republic of Congo (콩고민주공화국 동-코발트 광석의 광물학적 특정)

  • Cho, Hyen-Goo;Seo, Hye-Min;Kim, Soon-Oh;Kim, Young-Ho;Kim, Sang-Bae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.305-313
    • /
    • 2010
  • Mineralogical characteristics of Cu-Co ores from the Central African Copperbelt in the Democratic Repblic of Congo are studied using powder X-ray diffractometer, general area detector X-ray diffractometer, and electron proble microanalyzer. Black ores are mainly composed of heterogenite (cobalt oxide/hydroxide mineral) and malachite (copper carbonate mineral), whereas green ores are only composed of malachite. Heterogenite shows very bright white color under the reflected microscope, and belongs to 3R polytype, because it has d-spacings at $4.39{\AA}$ and $2.316{\AA}$. Since NiO and $Fe_20_3$ content of heterogenite are lower than those of 3R polytype from other localities, it cannot completely exclude the presence of 2H polytype in heterogenite from this study. Malachite is light grey color under the reflected microscope with approximate chemical formula of $Cu_{1.97}Co_{0.02}Fe^{2+}{_{0.01}}CO_3(OH)_2$. Heterogenite and malachite were probably formed at the supergene emichment stage, the last mineralization stage in the Central African Copperbelt. Cobalt seems to be much more emiched in the black supergene (oxy)hydroxide ore than those in the primary sulfide ore.

Highly Luminescent (Zn0.6Sr0.3Mg0.1)2Ga2S5:Eu2+ Green Phosphors for a White Light-Emitting Diode

  • Jeong, Yong-Kwang;Cho, Dong-Hee;Kim, Kwang-Bok;Kang, Jun-Gill
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2523-2528
    • /
    • 2012
  • Green phosphors $(Zn_{1-a-b}M_aM^{\prime}_b)_xGa_yS_{x+3y/2}:Eu^{2+}$ (M, M' = alkali earth ions) with x = 2 and y = 2-5 were prepared, starting from ZnO, MgO, $SrCO_3$, $Ga_2O_3$, $Eu_2O_3$, and S with a flux $NH_4F$ using a conventional solidstate reaction. A phosphor with the composition of $(Zn_{0.6}Sr_{0.3}Mg_{0.1})_2Ga_2S_5:Eu^{2+}$ produced the strongest luminescence at a 460-nm excitation. The observed XRD patterns indicated that the optimized phosphor consisted of two components: zinc thiogallate and zinc sulfide. The characteristic green luminescence of the $ZnS:Eu^{2+}$ component on excitation at 460 nm was attributed to the donor-acceptor ($D_{ZnGa_2S_4}-A_{ZnS}$) recombination in the hybrid boundary. The optimized green phosphor converted 17.9% of the absorbed blue light into luminescence. For the fabrication of light-emitting diode (LED), the optimized phosphor was coated with MgO using magnesium nitrate to overcome their weakness against moisture. The MgO-coated green phosphor was fabricated with a blue GaN LED, and the chromaticity index of the phosphor-cast LED (pc-LED) was investigated as a function of the wt % of the optimized phosphor. White LEDs were fabricated by pasting the optimized green (G) and the red (R) phosphors, and the commercial yellow (Y) phosphor on the blue chips. The three-band pc-WLED resulted in improved color rendering index (CRI) and corrected color temperature (CCT), compared with those of the two-band pc-WLED.

Analysis of Characteristics of the Blue OLEDs with Changing HBL Materials (정공 저지층의 재료변화에 따른 청색유기발광소자의 특성분석)

  • Kim, Jung-Yeoun;Kang, Myung-Koo;Oh, Hwan-Sool
    • 전자공학회논문지 IE
    • /
    • v.43 no.4
    • /
    • pp.1-7
    • /
    • 2006
  • In this paper, two types of blue organic light-emitting device were designed. We have analyzed the characteristics of Type I device without a hole blocking layer, and analyzed the characteristics of Type II device using a hole blocking layer of BCP or BAlq materials with 30 ${\AA}$ thickness. We obtained the ITO having the work function value of 5.02 eV using $N_2$ plasma treatment method with the plasma power 200 W. Type I device structure was ITO/2-TNATA/$\alpha$-NPD/DPVBi/$Alq_3$/LiF/Al:Li, and type II device structure was ITO/2-TNATA/$\alpha$-NPD/DPVBi/HBL/$Alq_3$/LiF/Al:Li. We have analyzed the characteristics of Type I and Type II device. The characteristics of the device were most efficiency on occasion of using a hole blocking layer of BAlq material with 30 ${\AA}$ thickness. Current density was 226.75 $mA/cm^2$, luminance was 10310 $cd/m^2$, Current efficiency was 4.55 cd/A, power efficiency was 1.43 lm/W at an applied voltage of 10V. The maximum EL wavelength of the fabricated blue organic light-emitting device was 456nm. The full-width at half-maximum (FWHM) for the EL spectra was 57nm. CIE color coordinates were x=0.1438 and y=0.1580, which was similar to NTSC deep-blue color with CIE color coordinates of x=0.14 and y=0.08.

Growth Properties of Tungsten-Bronze Sr1-xBaxNb2O6 Single Crystals (텅스텐 브론즈 Sr1-xBaxNb2O6 단결정의 성장 특성)

  • Joo, Gi-Tae;Kang, Bonghoon
    • Korean Journal of Materials Research
    • /
    • v.22 no.12
    • /
    • pp.711-716
    • /
    • 2012
  • Tungsten bronze structure $Sr_{1-x}Ba_xNb_2O_6$ (SBN) single crystals were grown primarily using the Czochralski method, in which several difficulties were encountered: striation formation and diameter control. Striation formation occurred mainly because of crystal rotation in an asymmetric thermal field and unsteady melt convection driven by thermal buoyancy forces. To optimize the growth conditions, bulk SBN crystals were grown in a furnace with resistance heating elements. The zone of $O_2$ atmosphere for crystal growth is 9.0 cm and the difference of temperature between the melt and the top is $70^{\circ}C$. According to the growth conditions of the rotation rate, grown SBN became either polycrystalline or composed of single crystals. In the case of as-grown $Sr_{1-x}Ba_xNb_2O_6$ (x = 0.4; 60SBN) single crystals, the color of the crystals was transparent yellowish and the growth axis was the c-axis. The facets of the crystals were of various shapes. The length and diameter of the single crystals was 50~70 mm and 5~10 mm, respectively. Tungsten bronze SBN growth is affected by the temperature profile and the atmosphere of the growing zone. The thermal expansion coefficients on heating and on cooling of the grown SBN single crystals were not matched. These coefficients were thought to influence the phase transition phenomena of SBN.

Analysis of Hazardous Heavy Metal in Colored Materials of Playground Facility for Children (어린이 놀이시설의 소재 색상에 따른 유해중금속 분석 연구)

  • Huh, Sun Hae;Weon, Jong-Il
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.2
    • /
    • pp.14-20
    • /
    • 2015
  • The content of hazardous heavy metal of materials used in playground facility for children was investigated using X-ray fluorescence (XRF) and inductively coupled plasma (ICP) analyses, In order to examine the content of hazardous heavy metals according to the material color, four colors, i.e., green, red, yellow and blue, were categorized on the materials used. The highest lead content is observed in the yellow plastic samples. The yellow samples with relatively high lead content show that the chrome content is also high. This can explained that lead chromate, so-called chromium yellow, is normally used as a main pigment to express the yellow color. Therefore, it is concluded that hazardous heavy metal detected in the materials of playground facility for children is due to the pigments used for coloring. Based on above findings, the relationship between the color of materials used in playground facility for children and the content of hazardous heavy metal is discussed.

THE EFFECTS OF BARIUM SULFATE AND IODIDE COMPOUND ON THE CHARACTERISTICS OF DENTAL ACRYLIC RESINS (치과용 아크릴릭 레진의 방사선 불투과도에 관한 연구 - 황산바륨과 요오드 화합물 첨가 -)

  • Lee Yong-Keun;Lee Keon-Il;Jung Sung-Woo
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.26 no.2
    • /
    • pp.133-145
    • /
    • 1996
  • Aspirating or swallowing foreign bodies is a common occurrence. If they are wholly or partly radiopaque, their localization in and progress through the gastrointestinal tract can be more effective. Of the dental origin foreign materials swallowed, the most common things are fragments of anterior maxillary partial denture. But the radiopacity of denture base resins is not sufficient to determine the location of the objects. The purpose of this study was to develop a radiopaque dental acrylic resin, which has clinically detectible radiopacity with minimal change of mechanical properties and color. The radiopacity, color change(CIE 6..E) and microhardness of acrylic resins were determined after mixing barium sulfate or iodide compound. Thermocycling course was conducted to determine the change of characteristic of resins after using for a long time in the mouth. Five or ten percent of barium sulfate to total weight of cured material was mixed with heat curing dental acrylic resin or chemically curing orthodontic resin. In the case of iodide compound, the mixing ratio was two or three percent. After mixing the high radiopaque materials, resin was cured to 20×20×2 mm plate, polished with #600 sand paper and finally polished with Microcloth(Buehler). The specimens were thermocycled in 5 and 55 t distilled water for 2,000 times, and the measurement of radiopacity, color and Vickers hardness was repeated every 500 times thcrmocycling. The radiopacity of specimens on the X -ray films was measured with densitometer(X-rite). The color change was detennined with differential colorimeter(Model TC-6FX, Tokyo Denshoku), and the Vickers hardness number was measured with microhardness tester(Mitsuzawa). The following results were obtained : 1. All the three variables, the kinds of acrylic resins, the mixing or the kinds of high radiopaque materials and thermocycling, had combined effect on the radiopacity of the dental acrylic resins(p<0.0l). 2. The two variables, the mixing or the kinds of high radiopaque materials and thermocycling, influenced on the radiopacity of the dental acrylic resins(p<0.01). But the kinds of acrylic resins did not influence on the color change of mixed dental acrylic resins(p>0.05). 3. Each of the three variables, the kinds of acrylic resins, the mixing or the kinds of high radiopaque materials and thermocycling, influenced on the radiopacity of dental acrylic resins(p<0.0l). 4. The high radiopaque materials used in this study did not yield clinically usable radiopacity, and the color change was great after mixing those materials.

  • PDF

A Study on the Synthesis of Rutile - Type Ceramic Pigments (Rutile계 안료의 합성에 관한 연구)

  • Eo, Hye-Jin;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.2
    • /
    • pp.178-182
    • /
    • 2011
  • The Rutile - type brown pigments doped with chromium were synthesized. Samples of $Ti_{1-x}Cr_xO_2$ ($0.02{\leq}X{\leq}0.08$) were synthesized by the solid state method. Solid solution limit of Cr contents to the rutile structure and its coloration were studied. Optimum composition was investigated accordingly. The characteristics of synthesized pigments were analyzed by XRD, SEM, Raman spectroscopy and UV. As a result, single phase of Rutile was observed from $1000^{\circ}C$ by XRD. The maximum limit of solid solution was 0.06 mole $Cr_2O_3$. The glazed sample showed brown color, and the value of CIE $L^*a^*b^*$ was $L^*$ 33.27, $a^*$ 10.64, $b^*$ 20.84.

A Study on the Characteristic Analysis of Blue OLED for the Luminous Traffic Safety Mark (발광형 교통안전표지용 청색 OLED의 특성분석에 관한 연구)

  • Kang, Myung-Goo;Kim, Jung-Yeoun;Oh, Hwan-Sool
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.6 no.2
    • /
    • pp.138-145
    • /
    • 2007
  • Luminous traffic safety mark is restricted to use only the place that has a thick fog, many night traffic accidents, limited field of view due to structure of road. Recently, LEDs are used for luminous traffic safety mark, but we propose an organic LED for a novel luminous traffic safety mark in the near future. The device structure was $ITO/2-TNATA(500{\AA})/{\alpha}-NPD(200{\AA})/DPVBi(300{\AA})/BCP(10{\AA})/Alq_3(200{\AA})/LiF(10{\AA})/Al:Li(1000{\AA})$. The characteristics of the device are most efficient on occasion of using $N_2$ gas plasma treatment. Current density is $240.71mA/cm^2$ luminance $10,550cd/m^2$, and current efficiency 3.53cd/A at an applied voltage of 10V. The maximum EL wavelength of the fabricated blue organic light-emitting device is 456nm. CIE color coordinates are x=0.1449 and y=0.1633, which is similar to NTSC deep-blue color with CIE color coordinates of x=0.14 and y=0.08.

  • PDF

Effect of Light Quality on Appearance of Photobleaching leaves During the Cure of Burley Tobacco (Burley종 잎담배 건조시 광질이 백화엽 발생에 미치는 영향)

  • Bae, Seong-Kook;Lim, Hae-Geon;Kim, Yo-Tae;Yu, Ik-Sang;Choi, Sun-Young
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.30 no.1
    • /
    • pp.1-6
    • /
    • 1985
  • This experiment was designed to determine the effect of light quality on the appearance of photobleaching leaves during the cure of Burley Tobacco. The harvested and browned tobacco leaves were exposed to sunlight in pipe houses covered with 8 kinds of color vinyls (white, red, black, yellow, purple, orange, blue, green), and exposed to ultraviolet rays(20W x 3) and infrared rays (150W x 2) in curing chamber (1.2 x 1.2 x 1.2m). Photobleaching occured more at lower position leaf and after the leaves being browned when the curing was done in sunlight under a transparent vinyl. But photobleaching leaves were 5-6% of total cured leaves in sunlight under all kinds of color vinyl houses. It seems that photobleaching mainly induced by ultrabiolet rays of sunlight, and humidity too influenced. Yellow, orange and purple vinyl were durable and effective as shading material of color vinyls. since white and red vinyl tore easily in two monthes in strong sunlight and under black and blue vinyl houses curing period was longer than others.

  • PDF