Feature-based similarity retrieval has become an important research issue in multimedia database systems. The features of multimedia data are useful for discriminating between multimedia objects (e 'g', documents, images, video, music score, etc.). For example, images are represented by their color histograms, texture vectors, and shape descriptors, and are usually high-dimensional data. The performance of conventional multidimensional data structures(e'g', R- Tree family, K-D-B tree, grid file, TV-tree) tends to deteriorate as the number of dimensions of feature vectors increases. The R*-tree is the most successful variant of the R-tree. In this paper, we propose a SOM-based R*-tree as a new indexing method for high-dimensional feature vectors.The SOM-based R*-tree combines SOM and R*-tree to achieve search performance more scalable to high dimensionalities. Self-Organizing Maps (SOMs) provide mapping from high-dimensional feature vectors onto a two dimensional space. The mapping preserves the topology of the feature vectors. The map is called a topological of the feature map, and preserves the mutual relationship (similarity) in the feature spaces of input data, clustering mutually similar feature vectors in neighboring nodes. Each node of the topological feature map holds a codebook vector. A best-matching-image-list. (BMIL) holds similar images that are closest to each codebook vector. In a topological feature map, there are empty nodes in which no image is classified. When we build an R*-tree, we use codebook vectors of topological feature map which eliminates the empty nodes that cause unnecessary disk access and degrade retrieval performance. We experimentally compare the retrieval time cost of a SOM-based R*-tree with that of an SOM and an R*-tree using color feature vectors extracted from 40, 000 images. The result show that the SOM-based R*-tree outperforms both the SOM and R*-tree due to the reduction of the number of nodes required to build R*-tree and retrieval time cost.
해색 원격탐사에서 대기 보정은 자료의 정확도와 신뢰성 확보를 위해 반드시 수행해야하는 과정으로 높은 정확도가 요구된다. 또한 최근 원격 탐사 커뮤니티에서는 위성 자료의 오차에 대한 요구 사항이 증가함에 따라 대기 보정의 보조 자료로 사용되는 기상 변수(오존량, 기압, 바람장, 층적분 수증기량[total precipitable water, TPW])의 오차에 의해 발생하는 원격 반사도(remote sensing reflectance, Rrs)의 오차에 대한 연구가 진행되고 있지만 오차 요인으로 알려진 수증기 프로파일의 변동성에 의한 Rrs의 오차에 대한 연구는 수행되지 않았다. 본 연구에서는 Second Simulation of a Satellite Signal Vector version 2.1 모의를 통해 GOCI-II 관측 영역 내의 수증기 프로파일의 변동성에 따른 수증기 투과도의 오차를 계산하고 이로 인해 발생하는 해색 산출물의 오차에 대해 분석하였다. Radiosonde 관측 수증기 프로파일은 그 형태가 복잡할 뿐만 아니라 지표 부근의 큰 변동성으로 인해 기존 GOCI-II 대기 보정에서 사용하고 있는 US standard 62 수증기 프로파일과의 차이가 최대 0.007만큼 발생하였다. 이로 인해 발생한 수증기 투과도의 차이는 GOCI-II 대기 보정에서 에어로졸 반사도 추정의 차이를 발생시키고, 결과적으로 모든 밴드에서 Rrs의 오차가 발생하였다. 하지만 412-555 nm 밴드에서 수증기 프로파일 차이로 인한 Rrs 오차는 요구 정확도보다 낮은 2% 미만으로 나타났으며, 다른 해색 산출물인 클로로필(chlorophyll-a) 농도, 용존 유기물, 총 부유물 농도에서도 유사한 오차를 보이고 있다. 본 연구의 결과는 대기 보정 및 해색 산출물의 정확도에 있어 수증기 프로파일의 차이의 영향이 적다는 것을 의미한다. 하지만 추후 연구에서 수증기 흡광 보정 시 수증기 프로파일의 변동성을 고려할 경우 보다 높은 수준의 Rrs 정확도 확보를 기대할 수 있다.
본 논문은 적응적 양자화 컬러 수와 적응적 병합 임계값을 이용하여 순차적으로 영역을 병합하여 영역의 경계를 보존하며 영상을 분할하는 방법을 제안한다. 제안방법은 먼저 PSNR을 이용하여 영상에 따라 다른 양자화 컬러 수로 영상을 벡터 양자화 한다. 그리고 양자화 영상을 이용하여 초기 영역을 설정한 후 CIE Lab와 RGB 컬러 공간에서 순차적으로 유사한 영역을 병합하여 영상의 주요 영역들로 분할한다. 병합의 각 단계에서는 유사성의 척도로 인접 영역의 컬러 거리를 사용하며 병합 임계값은 분할된 영역과 원영상의 컬러 거리의 평균과 평균 변화량을 이용하여 적응적으로 구하였다. 또한 RGB 컬러 공간에서의 병합 영상이 주요 영역 단위로 병합되지 않은 경우 후처리로서 CIE Lab 영역에서 다시 한번 병합을 수행한다. 이때 초기 영역 영상과 RGB 컬러 공간에서의 병합 영상의 영역간의 컬러 거리를 이용하여 병합 유무를 결정한다. 실험 결과는 제안방법에 의한 결과 영상이 주요 객체를 중심으로 분할되며 객체의 경계가 잘 보존됨을 보여준다. 또한 객관적인 척도에서도 기존의 방법에 비해 좋은 결과를 보여준다.
지도 영상에 포함된 문자들을 효율적으로 인식하기 위해서는, 문자 영역만을 추 출하여 독립된 계층으로 만드는 전처리 단계가 선행되어야 한다. 본 논문에서는 칼라 지도 영상의 색 정보를 대화식 클러스터링 기법에 의해 색 별로 분리하고, 문자 영역 을 추출하는 알고리즘을 제안하였다. 제안된 대화식 클러스터링 기법은 칼라 영상 중 에서 사용자가 분리하기 원하는 색을 대화식으로 선택하여 각각의 선택된 색을 중심 으로 클러스터를 형성하고 분리한다. 문자를 추출하는 알고리즘은 문자를 표현하는 색만을 추출한 이전 영상을 벡터 데이터화 한 후 각 원시 요소들의 상호 관계를 고려 하여 직선, 원, 문자의 세 계층으로 분류하는 것으로서, 문자와 직선이 중첩되어, 하 나의 연결 요소를 이루고 있을 때에도 효과적으로 문자를 분리할 수 있다. 알고리즘 의 평가를 위해 1:3,000의 지번약도에 대한 실험을 수행하였으며, 선분과 문자가 중 첩되어 있는 경우에도 각각 분리할 수 있음을 확인하였다.
본 논문에서는 움직임 추정 (motion estimation, ME), 컬러 라벨링(labeling) 그리고 Non-local mean 필터를 이용하여 2D 영상을 3D 업체 영상으로 변환하는 기법을 제안한다. 제안하는 기법에서는 먼저 프레임 간의 움직임을 추정하여 객체의 움직임 벡터를 추출하고 주어진 영상에 대해 컬러 라벨링 작업을 수행하여 영상을 분리한다. 움직임 추정 결과와 컬러 라벨링 결과를 비교 분석하여 영상내의 객체를 추출하고 추출된 객체를 이동하여 우 영상을 생성하게 되는데 이때 우 영상을 생성하는 과정에서 채워지지 않은 가려짐 영역이 발생하며 전체 화소간의 상관도를 고려하는 Non-local mean 필터를 사용하여 보상한다. 이후 원본 영상인 좌 영상과 생성된 우 영상으로 비윌 주사하여 최종 3D 업체 영상을 재현한다. 실험 결과를 통해 제안된 기법으로 생성된 3D 업체 영상에서 객체위주의 안정된 업체 변환이 수행되는 것을 확인할 수 있었다.
Kim, Jae-Ok;Kim, Chul-Hwan;Lee, Young-Min;Kim, Gyeong-Yun;Shin, Tae-Gi;Park, Chong-Yawl
한국펄프종이공학회:학술대회논문집
/
한국펄프종이공학회 2006년도 PAN PACIFIC CONFERENCE vol.2
/
pp.227-230
/
2006
The $St{\ddot{o}}ckigt$ sizing test of the most-commonly used sizing tests is easily influenced by the individual testers' bias in recognizing red coloration. Therefore the test had to be modified to improve its reliability and reproducibility by automated recognition of a coloration procedure during testing. In order to achieve this, all measured variables occurring during the $St{\ddot{o}}ckigt$ test was first be analyzed and then reflected in the new automatic system. Secondly, the most important principle applied was to transform the RGB values of the droplet image to hue (H), saturation (S) and value (V) respectively. This is because RGB cannot be used as a color standard, owing to RGB's peculiarity of being seriously affected by the observer's point of view. Therefore, the droplet color had to be separated into three distinct factors, namely the HSV values, in order to allow linear analysis of the droplet color. When the average values of the vectors calculated during color variation from yellow to brown were plotted against time, it was possible to determine the vector value of hue, the most sensitive factor among HSV, at the specific time by differentiation of a function when it exceeds the critical point. Then, the specific time consumed up to the critical point was regarded as the $St{\ddot{o}}ckigt$ sizing degree. The conventional method took more time to recognize an ending point of coloration than the automatic method, and in addition the error ranges of the conventional sizing degrees on the specific addition points of AKD were wider than those of the automatic method.
이미지를 분류하고 검색하는 기술(Image retrieval)중 하나인 Bag of visual words(BoVW)는 특징점(feature point)을 이용하는 방법으로 데이터베이스의 이미지 특징벡터들의 분포를 통해 쿼리 이미지를 자동으로 분류하고 검색해주는 시스템이다. Words를 구성하는데 특징벡터만을 이용하는 기존의 방법은 이용자가 원하지 않는 이미지를 검색하거나 분류할 수 있다. 이러한 단점을 해결하기 위해 특징벡터뿐만 아니라 이미지의 전체적인 분위기를 표현할 수 있는 색상정보나 반복되는 패턴 정보를 표현할 수 있는 텍스처 정보를 Words를 구성하는데 포함시킴으로서 다양한 검색을 가능하게 한다. 실험 부분에서는 특징정보만을 가진 words를 이용해 이미지를 분류한 결과와 색상정보와 텍스처 정보가 추가된 words를 가지고 이미지를 분류한 결과를 비교하였고 새로운 방법은 80~90%의 정확도를 나타내었다.
According as the drivers increase who have their cars, the comprehensive studies on the automobile for the traffic safety have been raised as the important problems. Visual Recognition System for radio-controled driving is a part of the sensor processor of Unmanned Autonomous Vehicle System. When a driver drives his car on an unknown highway or general road, it produces a model from the successively inputted road traffic information. The suggested Recognition System of the Road Traffic Safety Information Board is to recognize and distinguish automatically a Road Traffic Safety Information Board as one of road traffic information. The whole processes of Recognition System of the Road Traffic Safety Information Board suggested in this study are as follows. We took the photographs of Road Traffic Safety Information Board with a digital camera in order to get an image and normalize bitmap image file with a size of $200{\times}200$ byte with Photo Shop 5.0. The existing True Color is made up the color data of sixteen million kinds. We changed it with 256 Color, because it has large capacity, and spend much time on calculating. We have practiced works of 30 times with erosion and dilation algorithm to remove unnecessary images. We drawing out original image with the Region Splitting Technique as a kind of segmentation. We made three kinds of grouping(Attention Information Board, Prohibit Information Board, and Introduction Information Board) by RYB( Red, Yellow, Blue) color segmentation. We minimized the image size of board, direction, and the influence of rounding. We also minimized the Influence according to position. and the brightness of light and darkness with Eigen Vector and Eigen Value. The data sampling this feature value appeared after building the learning Code Book Database. The suggested Recognition System of the Road Traffic Safety Information Board firstly distinguished three kinds of groups in the database of learning Code Book, and suggested in order to recognize after comparing and judging the board want to recognize within the same group with Nearest Neighborhood Decision Making.
해양현상을 이해하기 위한 관측분야의 노력 중에서 해류 정보의 생산은 가장 어려운 작업 중의 하나이다. 이를 극복하기 위한 대안으로서 연속 화상 자료로부터 해류벡터를 추정하려는 많은 연구들이 진행 되고 있다. 본 연구에서는 한반도 주변의 SeaWiFS (Sea-viewing Wide Field-of-view Sensor) chlorophyll-a 해색 자료와 AVHRR/SST 를 이용하여 연속 화상 사이의 유사한 형태를 추적하는 최대상 관계수법을 사용한 표층 유속 벡터의 추정을 시도하였다. 한국의 남해역에서 적용한 유속 벡터 결과는 해면 고도계를 이용한 지형류, ADCP 관측 결과와 비교하여 유속은 약 15% 정도 작고, 유향은 약 $36^{\circ}$의 차이로 근접하여 기존 연구 결과에 비해 양호하게 나타났다. 이는 향후 GOCI 자료의 응용적 측면에서 매우 고무적이다.
다양한 종류의 컴퓨터가 사람, 사물, 환경 속에 내재되어 있고, 이들이 서로 연결되어, 필요한 곳에서 활용할 수 있는 유비쿼터스 환경에서는 홈 네트워크를 통해 이 기종 기기간 다양한 데이터 교환을 요구한다. 더욱이 원활한 영상 데이터의 처리, 전송, 모니터링 기술은 핵심적 요소가 아닐 수 없다. 공간 및 시간적인 해상도, 컬러의 표현 그리고 화질의 측정방법 등 고전적 영상 처리 연구 분야뿐만 아니라 국한된 대역폭을 갖는 홈 네트워크의 전송 체계에서 전송률 문제에 대한 심도 있는 연구가 필요하다. 본 논문에서는 홈 네트워크 상황에서 콘텐츠의 중심이 되는 영상 데이터의 전송과 처리 그리고 제어를 위하여 새로운 움직임 추정 알고리즘을 제안하고 이를 이용하여 다중카메라에서 전송된 다차원 영상의 실시간 모니터링 시스템을 구현한다. 각도, 거리등 다양한 환경에서 전송되어지는 스테레오 카메라의 영상 데이터들은 축소, 확대, 이동, 보정 등 전처리 후 제안된 움직임 보상을 위한 변형계층 모션벡터 추정 알고리즘을 이용하여 압축 처리, 전송 된다. 기존 모션벡터 추정 알고리즘인 전역 탐색, 3단계 탐색, 계층적 탐색이 갖는 장점을 계승하고 단점을 보완한 변형계층 알고리즘은 비정형, 소형 매크로 블록을 이용하여 휘도의 편차가 큰 영상의 효율적 움직임 추정에 이용된다. 본 논문에서 제안한 변형계층 움직임 추정 알고리즘과 이를 이용해 구현된 영상 시스템은 유비궈터스 환경에서 다양하게 활용될 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.