This study was conducted to develop the most precise NIR(near infrared spectrometric) calibration for rapid determination of chemical composition in ground samples of toasted burley tobacco using stepwise, stepup, principal component regression(PCR), partial least square(PLS) and modified partial least square(MPLS) calibration method. The number of wavelength(W) selected by stepup multiple linear regression using: second derivative spectra was as follows: total sugar(TS)-4 W, nicotine-9 W, total nitrogen(TN)-2 W, ash-8 W, total volatile base(TVB)-5 W, chlorine4 W, L of color-6 W, a of color-6 W and b of color-7 W. Comparing the calibration equations followed by each chemical components, the most precise calibration equation was MPLS for 75, a and b of color, PLS for nicotine, ash, TVB, chlorine and L of color and stepup for TN. The standard error of calibration(SEC) and standard error of performance(SEP) between result of near infrared analysis and standard laboratory analysis were 0.18, 0.40% for 75, 0.06, 0.08% for nicotine, 0.18, 0.16% for TN, 0.33, 0.46% for ash, 0.04, 0.03% for TVB, 0.08, 0.06% for chlorine, 0.54, 0.58 for L of color, 0.22, 0.22 for a of color and 0.27, 0.27 for b of color, respectively. The SEC and SEP of ash and TVB were within allowable error of standard laboratory analysis, nicotine, TN and chlorine were 1.2-2.0 times and 75 were 2.1-4.0 times larger than allowable error of standard laboratory analysis. The ratio of SEC and SEP to mean were 1.5, 1.6% for L of color, 3.7, 3.8% for a of color and 1.8, 1.8% for b of color, respectively. Key words : burley tobacco chemistry, near infrared spectroscopy.