• Title/Summary/Keyword: color reaction

Search Result 781, Processing Time 0.03 seconds

Studies on the Synthesis of Yellow Coupler and Color Development (황색 발색제의 합성과 발색현상에 관한 연구)

  • Kim, Yeoung-Chan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.116-121
    • /
    • 2012
  • In this paper, yellow coupler was prepared by the reaction of ${\alpha}$-pivaloyl- 2-chloro-5-aminoacetaniline hydrogen chloride with 1-hexadecane sulfonyl chloride in the presence of pyridine. The product was identified by using various analytical tools such as melting poin elemental analyzer, IR spectrophotometer, UV-Vis spectrophotometer, mass spectrometer. The reaction of yellow coupler with CD-3(color development agent) was shown yellow color.

A Measurement System for Color Environment-based Human Body Reaction (색채 환경 기반의 인체 반응 정보 측정 시스템)

  • Kim, Ji-Eon;Jeong, Chang-Won;Joo, Su-Chong
    • Journal of Internet Computing and Services
    • /
    • v.17 no.2
    • /
    • pp.59-65
    • /
    • 2016
  • The result of analyzing the cognitive reaction due to the color environment has been applied to various filed especially in medical field. Moreover, the study about the identification of patient's condition and examination the brain activity by collecting the bio-signal based on the color environment is being actively conducted. Even though, there were a variety of experiments by convention the color environment using a light or LED color, it still has a problem that affects the psychological information. Therefore, our proposed system using a HMD (Head Mounting display) to provide a completed color environment condition. This system uses the BMS(Biomedical System) to collect the biometric information which responds to the specific color condition and the human body response information can be measured by the development the Memory and Attention test on Mobile phone. The collection of Biometric information includes electro cardiogram(ECG), respiration, oxygen saturation (Sp02), Bio-impedance, blood pressure will store in the database. In addition, we can verify the result of the human body reaction in the color environment by Memory and Attention application. By utilizing the reaction of the human body information that is collected thought the proposed system, we can analyze the correlation between the physiological information and the color environment. And we also expect that this system can apply to the medical diagnosis and treatment. For future work, we will expand the system for prediction and treatment of Alzheimer disease by analyzing the visualization data through the proposed system. We will also do evaluation on the effectiveness of the system for using in the rehabilitation program.

Study on Treatment Characteristic of Advanced Oxidation Process using Ozone Oxidation and Peroxone AOP Process for Waste Dyeing Water Effluent Treatment (오존접촉산화 공정과 Peroxone AOP 공정을 이용한 염색폐수방류수 고도산화 처리특성 연구)

  • Park, Jun-Hyung;Shin, Dong-Hoon;Ryu, Seong-Han;Jo, Seog-Jin;Lee, Sang-Hun
    • Textile Coloration and Finishing
    • /
    • v.23 no.4
    • /
    • pp.274-283
    • /
    • 2011
  • Effect of pH on ozone oxidation and peroxone AOP(Advanced Oxidation Process) process was analyzed and the optimal efficiency for both processes was obtained at pH 7.5. In case of ozone oxidation process, the efficiencies of color, $COD_{Mn}$ and $BOD_5$ removal were measured to 93%, 70% and 89% at a reaction time of 50 min(ozone dosage of 111.67mg/$\ell$). When reaction time increased to 90 min(ozone dosage of 201mg/$\ell$), the efficiencies of color, $COD_{Mn}$ and $BOD_5$ removal were increased by 3~5 %, indicating that the increment of removal efficiency was insignificant considering longer reaction time. Similarly, the ozone/$H_2O_2$ ratio was optimized to 0.5 for peroxone AOP process. Removal efficiencies of color, $COD_{Mn}$ and $BOD_5$ were measured 95%, 81% and 94% at a reaction time of 50 min(ozone dosage of 111.67mg/$\ell$). When reaction time increased to 90min(ozone dosage of 201mg/$\ell$), the removal efficiency of color, CODMn, and BOD5 increased slightly by 1~5%.

Arginyl-fructosyl-glucose and Arginyl-fructose, Compounds Related to Browning Reaction in the Model System of Steaming and Heat-drying Processes for the Preparation of Red Ginseng

  • Suzuki, Yukio;Choi, Kang-Ju;Uchida, Kei;Ko, Sung-Ryong;Sohn, Hyun-Joo;Park, Jong-Dae
    • Journal of Ginseng Research
    • /
    • v.28 no.3
    • /
    • pp.143-148
    • /
    • 2004
  • Brown color intensity has been a major factor to estimate the quality of red ginseng and its products. This study deals with the relationship between the browning reaction of ginseng root and two compounds, arginyl-fructosyl-glucose(Arg-fru-glc) and arginyl-fructose (Arg-fru), in the model system of steaming and heat-drying processes for the preparation of red ginseng. During the steaming process, a marked decrease of starch and a considerable formation of maltose occurred in main roots of raw ginseng, but the formation of glucose was scarcely observed. After the heat-drying process, the brown color intensity of the powdered preparation of steamed main roots was 3 to 4 times higher than that of the powdered preparation of raw main roots. Also, when the heat- drying process was done with the addition of L-arginine, brown color intensity of the powdered preparation of steamed main roots was 12 to 13 times higher than that of the powdered preparation of raw main roots. The amount ratios of browning reaction products formed from sugar compounds and amino acids in the model system of steaming and heat-drying treatments in vitro were in order of xylose > glucose > fructose > maltose > dextrin (DE 9) > sucrose > dextrin (DE 8) and soluble starch. Each solution of Arg-fru-glc and Arg-fru that were synthesized chemically from maltose plus L-arginine and glucose plus L-arginine, respectively, changed from colorless to brown color during the heat-drying treatment. Amino acids or sugars were effective on the acceleration of each browning reaction of Arg-fru-gIc and Arg-fru during the heat-drying treatment.

Decolorization of Acid Orange II from Aqueous Solutions using Loess (황토를 이용한 Acid Orange II의 색도제거)

  • Park, Jae Hong
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.2
    • /
    • pp.141-146
    • /
    • 2011
  • Loess, a natural clay, was evaluated as an adsorbent for the decolorization of Acid Orange II, an azo and reactive dye, from aqueous solution. Adsorption studies were performed at $30^{\circ}C$ and the effect of reaction time, loess dosage, initial concentration, loess particle size, pH, agitation rate were investigated to determine the optimum operation conditions. The removal efficiencies of color were measured to evaluate the effectiveness of loess. From this study, it was found that optimal reaction time was 10 min. Color removal efficiencies of Acid Orange II were increased as higher loess dosage, initial concentration and agitation rate. However, color removal efficiencies decreased when pH is high and loess particle becomes large. Adsorption of Acid Orange II fitted to the pseudo-second-order rate kinetics more than first-order rate kinetics. Langmuir and Freundlich adsorption isotherm constants and correlation coefficients were calculated and compared. It was concluded that the adsorption data of Acid Orange II onto loess fitted to the Freundlich model more than Langmuir model.

Behavioral reaction of hairtail (Trichinus lepturus) to different colors of LED light (LED 색광에 대한 갈치의 행동반응)

  • KIM, Mun-Kwan;AN, Young-Il;PARK, Su-Hyeon;OH, Tae-Cheol;KANG, Hyeong-Cheol;PARK, Yong-Seok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.52 no.3
    • /
    • pp.183-190
    • /
    • 2016
  • This study carried out an experiment to find out the reaction of hairtail, Trichinus lepturus to the colors of LED light as a basic study on the development of the trolling gear and a method to enable the day-night operation. We used hairtails caught around Seongsan-po, Jeju Island by set nets and hairtail angling. The seven hairtails of the average length 68.9 cm (SD 9.2 cm) and the average weight 135.9 g (SD 47.9 g) were adapted themselves in the experimental water tank, 15 m Self-Governing 1.7 m in height and 1.5 m in depth, and then they were studied. We conducted experiment at the Ocean and Fisheries Research Institute in Jeju Special Self-Governing Province, from November to December 2015, and the sea surface temperature was between 16.5 and $19.5^{\circ}C$. The four colors of LED light, blue, white, green and red, were set up to transmit downward from the marginal area of tank. The 1 meter depth light intensity of LED colors is as follows: $0.09w/m^2/s$ (blue), $0.18w/m^2/s$ (white), $0.04w/m^2/s$ (green) and $0.007w/m^2/s$(red) To know the optimum LED color light, we selected one with better reaction rate after comparison of two colors simultaneously and the selected color was again compared to the other color in a tournament style two times a day (day and night) and ten times totally. The reaction rates were shown as the frequencies of hairtail appearance for 5 minutes in the lighting zone after turning on the LED lights. The reaction rate of the blue was at 97% unlike the red 3% (p < 0.001). The blue was at 75% unlike the green at 25% (p < 0.001). The blue was at 67% unlike the white at 33% (p < 0.001). Therefore, the color of light source showing the highest reaction rate was the blue.

The Effect of Magnetic Therapy on The Allergic Reaction of Bee Venom (자기요법이 봉약침 국소 알러지반응에 미치는 영향)

  • Kim, Hyun-joong;Kim, Min-soo;Park, Young-jae;Lee, Eun-yong
    • Journal of Acupuncture Research
    • /
    • v.21 no.6
    • /
    • pp.187-193
    • /
    • 2004
  • Objective : This study was performed to examine the Magnetic therapy decrease the allergic reaction of Bee Venom. Methods : We injected BV to sample group(n=10) and control group(n=10) at 2 points of body, and also sample group was treated with Magnetic therapy additionally. We observed the change of local pain, pruritus, color difference value at 1 hour, 24 hours after injection. Results : Local pain, pruritus and color difference value of sample group were more decreased than control group. Conclusions : The Magnetic therapy decreased allergic reaction of Bee Venom.

  • PDF

Effect on clothing color preference of seasonal variations in physiology and psychology (계절에 따른 생리와 심리의 변화가 의복색 선호에 미치는 영향)

  • Kim Sook-Hee;Lee Won-Ja
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.7 no.3
    • /
    • pp.75-81
    • /
    • 2005
  • The experiment aimed at knowing the effect of physiology and psychology according to season on color preference. Two tests, one of the spring and the other of the autumn was conducted. Seventy subjects with normal color vision served as subjects. The subjects entered a bioclimatic chamber controlled at a temperature of $25\pm1^{\circ}C$, a relative humidity of $50\pm5\%$ and a light of 1000 1x. The subjects wearing white shirts and trousers sat quietly on a sofa for one our. Sensation from warm to cool colors might be possibly different individually Therefore, a subject asked to array 41 randomly placed cloth colors from very warm to very cool colors during rest quietly for one our. All subjects arrayed these cloth colors in the order from red through yellow and green to blue, which had the reproducibility. After rest, they were instructed to choose a single one out of 41 cloth colors, preferred by themselves, every 10min during one our 0-ring test were measured to red, yellow, white, blue, black, favorite color, and dislike color. Most subjects preferred warmer color in April than in December. Tympanic temperature was significantly lower in December than in April. Finger presser was significantly higher in like color than in dislike color but it was no significant differences between spring and autumn. The preferring the warm color in April toward summer when basal metabolic rate is decreased than in December toward winter when it is increased can explain that physiology reaction by load error between actual core temperature and set-point induces psychological reaction to pursue visual alliesthesia. Our present experiment revealed that the preferred color could be determined by the relationship between the internal temperature and its set point according to season. It should be emphasized that the alliesthesia was observed also in the realm of visual system.

  • PDF

Decolorization Characteristics of Acid and Basic Dyes Using Modified Zero-valent Iron (개질 영가철을 이용한 산성 및 염기성 염료의 탈색 특성)

  • Choi, Jeong-Hak;Kim, Young-Hun
    • Journal of Environmental Science International
    • /
    • v.25 no.12
    • /
    • pp.1717-1726
    • /
    • 2016
  • In this study, the reductive decolorization of three acid and basic dyes using modified zero-valent iron (i.e., acid-washed iron (Aw/Fe) and palladium coated iron (Pd/Fe)) at various pH conditions (pH 3~5) was experimentally investigated and the decolorization characteristics were evaluated by analyzing the absorbance spectra and reaction kinetics. In the case of acid dyes such as methyl orange and eriochrome black T, color removal efficiencies increased as initial pH of the dye solution decreased. However, the color removal of methylene blue, a basic dye, was not affected much by the initial pH and more than 70% of color was removed within 10 min. During the decolorization reaction, the absorbance of methyl orange (${\lambda}_{max}=464nm$) and eriochrome black T (${\lambda}_{max}=528nm$) decreased in the visible range but increased in the UV range. The absorbance of methylene blue (${\lambda}_{max}=664nm$) also decreased gradually in the visible range. Pseudo-zero order, pseudo-first order, and pseudo-second order kinetic models were used to analyze the reaction kinetics. The pseudo-second order kinetic model was found to be the best with good correlation. The decolorization reaction rate constants ($k_2$) of methylene blue were relatively higher than those of methyl orange and eriochrome black T. The reaction rate constants of methyl orange and eriochrome black T increased with a decrease in the initial pH.