• 제목/요약/키워드: color imaging

검색결과 402건 처리시간 0.028초

Artificial Intelligence-Based Colorectal Polyp Histology Prediction by Using Narrow-Band Image-Magnifying Colonoscopy

  • Istvan Racz;Andras Horvath;Noemi Kranitz;Gyongyi Kiss;Henriett Regoczi;Zoltan Horvath
    • Clinical Endoscopy
    • /
    • 제55권1호
    • /
    • pp.113-121
    • /
    • 2022
  • Background/Aims: We have been developing artificial intelligence based polyp histology prediction (AIPHP) method to classify Narrow Band Imaging (NBI) magnifying colonoscopy images to predict the hyperplastic or neoplastic histology of polyps. Our aim was to analyze the accuracy of AIPHP and narrow-band imaging international colorectal endoscopic (NICE) classification based histology predictions and also to compare the results of the two methods. Methods: We studied 373 colorectal polyp samples taken by polypectomy from 279 patients. The documented NBI still images were analyzed by the AIPHP method and by the NICE classification parallel. The AIPHP software was created by machine learning method. The software measures five geometrical and color features on the endoscopic image. Results: The accuracy of AIPHP was 86.6% (323/373) in total of polyps. We compared the AIPHP accuracy results for diminutive and non-diminutive polyps (82.1% vs. 92.2%; p=0.0032). The accuracy of the hyperplastic histology prediction was significantly better by NICE compared to AIPHP method both in the diminutive polyps (n=207) (95.2% vs. 82.1%) (p<0.001) and also in all evaluated polyps (n=373) (97.1% vs. 86.6%) (p<0.001) Conclusions: Our artificial intelligence based polyp histology prediction software could predict histology with high accuracy only in the large size polyp subgroup.

Software development for the visualization of brain fiber tract by using 24-bit color coding in diffusion tensor image

  • Oh, Jung-Su;Song, In-Chan;Ik hwan Cho;Kim, Jong-Hyo;Chang, Kee-Hyun;Park, Kwang-Suk
    • 대한자기공명의과학회:학술대회논문집
    • /
    • 대한자기공명의과학회 2002년도 제7차 학술대회 초록집
    • /
    • pp.133-133
    • /
    • 2002
  • Purpose: The purpose of paper is to implement software to visualize brain fiber tract using a 24-bit color coding scheme and to test its feasibility. Materials and Methods: MR imaging was performed on GE 1.5 T Signa scanner. For diffusion tensor image, we used a single shot spin-echo EPI sequence with 7 non-colinear pulsed-field gradient directions: (x, y, z):(1,1,0),(-1,1,0),(1,0,1),(-1,0,1),(0,1,1),(0,1,-1) and without diffusion gradient. B-factor was 500 sec/$\textrm{mm}^2$. Acquisition parameters are as follows: TUTE=10000ms/99ms, FOV=240mm, matrix=128${\times}$128, slice thickness/gap=6mm/0mm, total slice number=30. Subjects consisted of 10 normal young volunteers (age:21∼26 yrs, 5 men, 5 women). All DTI images were smoothed with Gaussian kernel with the FWHM of 2 pixels. Color coding schemes for visualization of directional information was as follows. HSV(Hue, Saturation, Value) color system is appropriate for assigning RGB(Red, Green, and Blue) value for every different directions because of its volumetric directional expression. Each of HSV are assigned due to (r,$\theta$,${\Phi}$) in spherical coordinate. HSV calculated by this way can be transformed into RGB color system by general HSV to RGB conversion formula. Symmetry schemes: It is natural to code the antipodal direction to be same color(antipodal symmetry). So even with no symmetry scheme, the antipodal symmetry must be included. With no symmetry scheme, we can assign every different colors for every different orientation.(H =${\Phi}$, S=2$\theta$/$\pi$, V=λw, where λw is anisotropy). But that may assign very discontinuous color even between adjacent yokels. On the other hand, Full symmetry or absolute value scheme includes symmetry for 180$^{\circ}$ rotation about xy-plane of color coordinate (rotational symmetry) and for both hemisphere (mirror symmetry). In absolute value scheme, each of RGB value can be expressed as follows. R=λw|Vx|, G=λw|Vy|, B=λw|Vz|, where (Vx, Vy, Vz) is eigenvector corresponding to the largest eigenvalue of diffusion tensor. With applying full symmetry or absolute value scheme, we can get more continuous color coding at the expense of coding same color for symmetric direction. For better visualization of fiber tract directions, Gamma and brightness correction had done. All of these implementations were done on the IDL 5.4 platform.

  • PDF

저선량 방사선 처리가 탁주 품질특성에 미치는 영향 (Effect of Low-Dose Radiation on Quality Characteristics of Takju)

  • 이윤규;탁은미;김보미나;서충원;최승환;신용섭;김선칠
    • 대한디지털의료영상학회논문지
    • /
    • 제13권3호
    • /
    • pp.133-137
    • /
    • 2011
  • This research investigated how low dose radiation affected the quality characteristics of Takju. The treatment group were the quality characteristics of control group, Takju treated by radiation of separate 4, 7, 10 Gy and sterilized Takju. We measured pH, titratable acidity, alcohol, brix, total viable cell count, Hunter's color values, sensory characteristic. As a result, We discovered there were minute changes in pH, titratable acidity, alcohol, brix, total viable cell count. Likewise, The color appeared changes on separate radiation dose. In the sensory characteristic, People's preference ranked better than average level according to priority Takju treated by 4, 7, 10 radiation. In conclusion, Low dose radiation had little effect on the quality characteristics of Takju. However, Takju received a favorable review by some people In test of taste such as after taste. So We thought, such as preservation, the research using the radiation should be continually conducted.

  • PDF

알루미늄 스퍼터링 처리 의류소재의 스텔스 특성과 전자파 차단 및 전기적 특성에 관한 연구 - 밀도 변화를 중심으로 - (Stealth, electromagnetic interception, and electrical properties of aluminum sputtered clothing materials - Focusing on the density change -)

  • 한혜리
    • 복식문화연구
    • /
    • 제30권4호
    • /
    • pp.579-593
    • /
    • 2022
  • This study examines the surface characteristics, electrical conductivity, electromagnetic wave blocking characteristics, infrared (IR) transmittance, stealth function, thermal characteristics, and moisture characteristics of IR thermal imaging cameras. Nylon film (NFi), nylon fabric (NFa), and 5 types of nylon mesh were selected as the base materials for aluminum sputtering, and aluminum sputtering was performed to study IR thermal imaging, color difference, temperature change, and so on, and the relationship with infrared transmittance was assessed. The electrical conductivity was measured and the aluminum-sputtered nylon film demonstrated 25.6kΩ of surface resistance and high electrical conductivity. In addition, the electromagnetic wave shielding characteristics of the sputtering-treated nylon film samples were noticeably increased as a result of aluminum sputtering treatment as measured by the electromagnetic wave blocking characteristics. When NFi and NFa samples with single-sided sputtering were placed on the human body (sputtering layer faced the outside air) and imaged using IR thermographic cameras, the sputtering layer displayed a color similar to the surroundings, showing a stealth effect. Moreover, the tighter the sample density, the better the stealth function. According to the L, a, b measurements, when the sputtering layer of NFi and NFa samples faced the outside air, the value of a was generally high, thereby demonstrating a concealing effect, and the △E value was also high at 124.2 and 93.9, revealing a significant difference between the treated and untreated samples. This research may be applicable to various fields, such as the military wear, conductive sensors, electromagnetic wave shielding film, and others.

화상처리기법을 이용한 온도장 및 속도장 동시 측정기법 개발 (Simultaneous velocity and temperature measurement of thermo-fluid flows by using particle imaging technique)

  • 이상준;백승조;윤정환;도덕희
    • 대한기계학회논문집B
    • /
    • 제20권10호
    • /
    • pp.3334-3343
    • /
    • 1996
  • A quantitative flow visualization technique was developed to measure velocity and temperature fields simultaneously in a two-dimensional cross section of thermo-fluid flows. Thermochromic liquid crystal(TLC) particles are used as temperature sensor and velocity tracers. Illuminating a thermo-fluid flow with a thin sheet of white light, the reflected colors from the TLC particles in the flow were captured simultaneously by two CCD cameras; a 3-chip CCD color camera for temperature field measurement and a black and white CCD camera for velocity field measurement. Variations of temperature field were measured by using a HSI true color image processing system and TLC solution. The relationship between the hue values of TLC color image and real temperature was obtained and this calibration curve was used to measure the true temperature under the same camera and illumination condition. The velocity field was obtained by using a 2-frame PTV technique using the concept of match-probability to track true velocity vectors from two consecutive image frames. These two techniques were applied at the same time to the unsteady thermal-fluid flow in a Hele-Shaw cell to measure the temperature and velocity field simultaneously and some results are discussed.

Selection of High Redshift Quasars with Infrared Medium-deep Survey

  • 전이슬;임명신;박원기;김지훈;전현성;최창수
    • 천문학회보
    • /
    • 제35권1호
    • /
    • pp.77.2-77.2
    • /
    • 2010
  • A high redshift quasar is useful to investigate the early part of our universe. Since they are one of the brightest objects in the early universe, they can provide us with clues of the growth of super massive black holes and the early metal enrichment history. To discover the high redshift quasars, we designed a survey of wide area and moderate depth; Infrared Medium-deep Survey (IMS), a J-band imaging survey of ~200 $deg^2$ area where the multi-wavelength data sets exist. To obtain the J-band data, we are using the United Kingdom Infra-Red Telescope (UKIRT), and so far we have covered ~20 $deg^2$ with Y- or J-bands over three observing runs during 2009. We used color-color diagrams of multi-wavelength bands including i, z, Y, J, K, $3.6{\mu}m$ and $4.5{\mu}m$ to select high redshift quasars. The major challenge in the selection is many M/L/T dwarfs, low redshift galaxies, and instrumental defects that can be mistaken as a high redshift quasar. We describe how such contaminating sources can be excluded by adopting multiple color-color diagrams and eye-ball inspections. So far, our selection reveals two quasar candidates at z~7.

  • PDF

Current Status of the High Redshift Quasars Selection from Infrared Medium-deep Survey

  • Jeon, Yi-Seul;Im, Myung-Shin;Park, Won-Kee;Kim, Ji-Hoon;Jun, Hyun-Sung;Choi, Chang-Su
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.37.1-37.1
    • /
    • 2010
  • A high redshift quasar is useful to investigate the early part of our universe. Since they are one of the brightest objects in the early universe, they can provide us with clues of the growth of super massive black holes and the early metal enrichment history. To discover the high redshift quasars, we designed a survey of wide area and moderate depth; Infrared Medium-deep Survey (IMS), a J-band imaging survey of ~200 deg2 area where the multi-wavelength data sets exist. To obtain the J-band data, we are using the United Kingdom Infra-Red Telescope (UKIRT), and so far we have covered~40 deg2 with Y- or J-bands over 36 observing nights. We used color-color diagrams of multi-wavelength bands including i, z, Y, J, K, $3.6{\mu}m$ and $4.5{\mu}m$ to select high redshift quasars. The major challenge in the selection is many M/L/T dwarfs, low redshift galaxies, and instrumental defects that can be mistaken as a high redshift quasar. We describe how such contaminating sources can be excluded by adopting multiple color-color diagrams and eye-ball inspections. So far, our selection reveals one quasar candidates at z~7 and a few candidates at z~6. In this poster presentation, we will update the current status of the quasar selection in the IMS fields.

  • PDF

깊이 영상을 이용한 수중 스테레오 영상의 가시성 개선 (Visibility Enhancement of Underwater Stereo Images Using Depth Image)

  • 신형철;김상훈;손광훈
    • 방송공학회논문지
    • /
    • 제17권4호
    • /
    • pp.684-694
    • /
    • 2012
  • 수중 환경에서 물과 부유물에 의한 빛의 감쇄와 산란은 수중 영상의 색상을 열화시키고 가시성을 저하시키는 주요 원인이 된다. 이러한 수중 산란광은 피사체와의 거리의 함수로 표현되므로 깊이 정보는 빛의 전달률을 계산하기 위한 중요한 정보를 제공한다. 본 논문에서는 깊이 영상을 이용하여 전달률을 측정하고 이를 기반으로 영상의 각 화소에 존재하는 산란에 의한 열화값을 제거함으로써 수중 스테레오 영상의 가시성을 개선하는 방법을 제안한다. 제안하는 방법은 제거해야 하는 열화값이 영상의 화소값 보다 크지 않도록 보정하여 가사성 개선 시 나타날 수 있는 부분적인 영상 왜곡을 방지한다. 또한 수중 스테레오 영상의 심각한 문제점 중의 하나인 색상 불균형을 효과적으로 보정하여 가시성 개선 후 좌, 우 영상의 동일성을 유지한다. 실험 결과는 다양한 환경의 수중 영상에 대하여 제안하는 가시성 개선 후 색대비가 영상에 따라 5%에서 14%이상 향상되었음을 보여준다.

광공진 현상을 이용한 입체 영상센서 및 신호처리 기법 (Optical Resonance-based Three Dimensional Sensing Device and its Signal Processing)

  • 박용화;유장우;박창영;윤희선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 추계학술대회 논문집
    • /
    • pp.763-764
    • /
    • 2013
  • A three-dimensional image capturing device and its signal processing algorithm and apparatus are presented. Three dimensional information is one of emerging differentiators that provides consumers with more realistic and immersive experiences in user interface, game, 3D-virtual reality, and 3D display. It has the depth information of a scene together with conventional color image so that full-information of real life that human eyes experience can be captured, recorded and reproduced. 20 Mega-Hertz-switching high speed image shutter device for 3D image capturing and its application to system prototype are presented[1,2]. For 3D image capturing, the system utilizes Time-of-Flight (TOF) principle by means of 20MHz high-speed micro-optical image modulator, so called 'optical resonator'. The high speed image modulation is obtained using the electro-optic operation of the multi-layer stacked structure having diffractive mirrors and optical resonance cavity which maximizes the magnitude of optical modulation[3,4]. The optical resonator is specially designed and fabricated realizing low resistance-capacitance cell structures having small RC-time constant. The optical shutter is positioned in front of a standard high resolution CMOS image sensor and modulates the IR image reflected from the object to capture a depth image (Figure 1). Suggested novel optical resonator enables capturing of a full HD depth image with depth accuracy of mm-scale, which is the largest depth image resolution among the-state-of-the-arts, which have been limited up to VGA. The 3D camera prototype realizes color/depth concurrent sensing optical architecture to capture 14Mp color and full HD depth images, simultaneously (Figure 2,3). The resulting high definition color/depth image and its capturing device have crucial impact on 3D business eco-system in IT industry especially as 3D image sensing means in the fields of 3D camera, gesture recognition, user interface, and 3D display. This paper presents MEMS-based optical resonator design, fabrication, 3D camera system prototype and signal processing algorithms.

  • PDF

Image Quality Evaluation and Tolerance Analysis for Camera Lenses with Diffractive Element

  • Lee, Sang-Hyuck;Jeong, Ho-Seop;Jin, Young-Su;Song, Seok-Ho;Park, Woo-Je
    • Journal of the Optical Society of Korea
    • /
    • 제10권3호
    • /
    • pp.105-111
    • /
    • 2006
  • A novel image quality evaluation method, which is based on combination of the rigorous grating diffraction theory and the ray-optic method, is proposed. It is applied for design optimization and, tolerance analysis of optical imaging systems implementing diffractive optical elements (DOE). The evaluation method can predict the quality and resolution of the image on the image sensor plane through the optical imaging system. Especially, we can simulate the effect of diffraction efficiencies of DOE in the camera lenses module, which is very effective for predicting different color sense and MTF performance. Using this method, we can effectively determine the fabrication tolerances of diffractive and refractive optical elements such as the variations' in profile thickness, and the shoulder of the DOE, as well as conventional parameters such as decenter and tilt in optical-surface alignments. A DOE-based 2M-resolution camera lens module designed by the optimization process based on the proposed image quality evaluation method shows ${\sim}15%$ MTF improvement compared with a design without such an optimization.