• Title/Summary/Keyword: color edge detection

Search Result 177, Processing Time 0.026 seconds

Chessboard and Pieces Detection for Janggi Chess Playing Robot

  • Nhat, Vo Quang;Lee, GueeSang
    • International Journal of Contents
    • /
    • v.9 no.4
    • /
    • pp.16-21
    • /
    • 2013
  • Vision system is an indispensable part of constructing the chess-playing robot. Chessboard detection and pieces localization in the captured image of robot's camera are important steps for processes followed such as pieces recognition, move calculation, and robot controlling. We present a method for detecting the Janggi chessboard and pieces based on the edge and color feature. Hough transform combined with line extraction is used for segmenting the chessboard and warping it to form the rectangle shape in order to detect and interpolate the lines of chessboard. Then we detect the existence of pieces and their side by applying the saliency map and checking the color distribution at piece locations. While other methods either work only with the empty chessboard or do not care about the piece existence, our method could detect sufficiently side and position of pieces as well as lines of the chessboard even if the occlusion happens.

Real-Time Automatic Human Face Detection and Recognition System Using Skin Colors of Face, Face Feature Vectors and Facial Angle Informations (얼굴피부색, 얼굴특징벡터 및 안면각 정보를 이용한 실시간 자동얼굴검출 및 인식시스템)

  • Kim, Yeong-Il;Lee, Eung-Ju
    • The KIPS Transactions:PartB
    • /
    • v.9B no.4
    • /
    • pp.491-500
    • /
    • 2002
  • In this paper, we propose a real-time face detection and recognition system by using skin color informations, geometrical feature vectors of face, and facial angle informations from color face image. The proposed algorithm improved face region extraction efficiency by using skin color informations on the HSI color coordinate and face edge information. And also, it improved face recognition efficiency by using geometrical feature vectors of face and facial angles from the extracted face region image. In the experiment, the proposed algorithm shows more improved recognition efficiency as well as face region extraction efficiency than conventional methods.

A New Interpretation of the Compass Gradient Edge Operators (Compass Gradient Edge 연산자의 새로운 해석방법)

  • Park, Rae-Hong;Choi, Woo Young
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.1
    • /
    • pp.97-101
    • /
    • 1987
  • The edge, a discontinuity or abrupt change in the gray-level or color, is a fundamentally important primitive feature of an image necessary for the image analysis and classification. Two-dimensional 3x3 compass gradient operators (ex. Sobel, Prewitt, and Kirsch operators)are commonly used in the edge detection and usually detect 8 compass directional components. In this paper, we present a new interpretation of the relationships between the resulting 8 gradient magnitudes and the 8 intensity values of neighboring pixels which are covered by the two-dimensional 3x3 mask. It is expected that a new gradient edge operator may be designed by changing the eigenvalues in the transform domain and the fast optical edge operator may be implemented by using the optical system.

  • PDF

Human Ear Detection for Biometries (생체인식을 위한 귀 영역 검출)

  • Kim Young-Baek;Rhee Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.7
    • /
    • pp.813-816
    • /
    • 2005
  • Ear detection is an important part of an non-invasive ear recognition system. In this paper we propose human ear detection from side face images. The proposed method is made by imitating the human recognition process using feature information and color information. First, we search face candidate area in an input image by using 'skin-color model' and try to find an ear area based on edge information. Then, to verify whether it is the ear area or not, we use the SVM (Support Vector Machine) based on a statistical theory. The method shows high detection ratio in indoors environment with stable illumination.

The Role of the Pattern Edge in Goldfish Visual Motion Detection

  • Kim, Sun-Hee;Jung, Chang-Sub
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.6
    • /
    • pp.413-417
    • /
    • 2010
  • To understand the function of edges in perception of moving objects, we defined four questions to answer. Is the focus point in visual motion detection of a moving object: (1) the body or the edge of the object, (2) the leading edge or trailing edge of the object, (3) different in scotopic, mesopic and photopic luminance levels, or (4) different for colored objects? We measured the Optomotor Response (OMR) and Edge Triggering Response (ETR) of goldfish. We used a square and sine wave patterns with black and red stripes and a square wave pattern with black and grey stripes to generate OMR's and ETR's in the goldfish. When we used black and red stripes, the black leading edges stimulated an ETR under scotopic conditions, red leading edges stimulated an ETR under photopic conditions, and both black and red leading edges stimulated an ETR under mesopic luminance levels. For black and gray stripes, only black leading edges stimulated an ETR in all three light illumination levels. We observed less OMR and ETR results using the sine wave pattern compared to using the square wave pattern. From these results, we deduced that the goldfish tend to prefer tracking the leading edge of the pattern. The goldfish can also detect the color of the moving pattern under photopic luminance conditions. We decided that ETR is an intriguing factor in OMR, and is suitable as a method of behavioral measurement in visual system research.

Fish Injured Rate Measurement Using Color Image Segmentation Method Based on K-Means Clustering Algorithm and Otsu's Threshold Algorithm

  • Sheng, Dong-Bo;Kim, Sang-Bong;Nguyen, Trong-Hai;Kim, Dae-Hwan;Gao, Tian-Shui;Kim, Hak-Kyeong
    • Journal of Power System Engineering
    • /
    • v.20 no.4
    • /
    • pp.32-37
    • /
    • 2016
  • This paper proposes two measurement methods for injured rate of fish surface using color image segmentation method based on K-means clustering algorithm and Otsu's threshold algorithm. To do this task, the following steps are done. Firstly, an RGB color image of the fish is obtained by the CCD color camera and then converted from RGB to HSI. Secondly, the S channel is extracted from HSI color space. Thirdly, by applying the K-means clustering algorithm to the HSI color space and applying the Otsu's threshold algorithm to the S channel of HSI color space, the binary images are obtained. Fourthly, morphological processes such as dilation and erosion, etc. are applied to the binary image. Fifthly, to count the number of pixels, the connected-component labeling is adopted and the defined injured rate is gotten by calculating the pixels on the labeled images. Finally, to compare the performances of the proposed two measurement methods based on the K-means clustering algorithm and the Otsu's threshold algorithm, the edge detection of the final binary image after morphological processing is done and matched with the gray image of the original RGB image obtained by CCD camera. The results show that the detected edge of injured part by the K-means clustering algorithm is more close to real injured edge than that by the Otsu' threshold algorithm.

Study on an Extraction Method for a Fuel Rod Image and a Visualization of the Color Information in a Sectional Image of a Spent Fuel Assembly (사용후핵연료집합체 영상에서 핵연료봉 영상 추출방법과 색상정보의 가시화에 관한 연구)

  • Jang, Ji-Woon;Shin, Hee-Sung;Youn, Cheung;Kim, Ho-Dong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.5
    • /
    • pp.432-441
    • /
    • 2007
  • Image processing methods for an extraction of a nuclear fuel rod image and visualization methods of the RGB color data were studied with a sectional image of spent fuel assembly. The fuel rod images could be extracted by using a histogram analysis, an edge detection and RGB rotor data. In these results, a size of the spent fuel assembly could be measured by using a histogram analysis method and a shape of the spent fuel rod could be observed by using an edge detection method. Finally, a various analyses were established for status of the spent fuel assembly by realized various 3D images for the color data in an image of a spent fuel assembly.

Color-Edge Detection with CIEL*Ch Color Space (컬러영상 경계추출을 위한 CIEL*Ch 색체계 변환의 적용)

  • Yang, Sung-Chul;Kim, Yong-Il;Yu, Ki-Yun
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.273-278
    • /
    • 2005
  • 전정색영상과 달리 컬러영상에서 개체를 추출할 경우 밴드별 분광특성을 이용하여 특정지물을 효과적으로 인식할 수 일고 밝기값만으로 구별해낼 수 없는 개체를 추출할 수 있는 장점이 있다. 본 연구에서는 컬러영상에서 지형지물을 추출하기 위해 컬러정보를 이용하여 경계를 추출하는 연구를 수행하기 위해 일반적으로 사용하는 RGB 색체계가 아닌 CIEL*Ch 색체계로 변환한 후 L*에서 경계를 추출하고 C, h값으로 특정지물을경계를 추출하는 기법으로 컬러영상의 경계를 추출하였다.

  • PDF

Lane Model Extraction Based on Combination of Color and Edge Information from Car Black-box Images (차량용 블랙박스 영상으로부터 색상과 에지정보의 조합에 기반한 차선모델 추출)

  • Liang, Han;Seo, Suyoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • This paper presents a procedure to extract lane line models using a set of proposed methods. Firstly, an image warping method based on homography is proposed to transform a target image into an image which is efficient to find lane pixels within a certain region in the image. Secondly, a method to use the combination of the results of edge detection and HSL (Hue, Saturation, and Lightness) transform is proposed to detect lane candidate pixels with reliability. Thirdly, erroneous candidate lane pixels are eliminated using a selection area method. Fourthly, a method to fit lane pixels to quadratic polynomials is proposed. In order to test the validity of the proposed procedure, a set of black-box images captured under varying illumination and noise conditions were used. The experimental results show that the proposed procedure could overcome the problems of color-only and edge-only based methods and extract lane pixels and model the lane line geometry effectively within less than 0.6 seconds per frame under a low-cost computing environment.

Robust Scene Change Detection Method for MPEG Video (MPEG 동영상에서의 강인한 장면 전환 검출 기법의 연구)

  • 이흔진;이재호;김회율
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.157-160
    • /
    • 2002
  • Scene change detection is the fundamental process of automatic video indexing and retrieving. In this paper we propose a method which utilizes both compressed and uncompressed domain methods to detect scene change in a video. Candidate locations for scene change are estimated from DC images and motion vector information in compressed domain. And candidate frames are verified using edge histogram distance and color histogram distance, in uncompressed domain. The experimental results show that scene change can be detected fast and correctly by proposed method.

  • PDF