• 제목/요약/키워드: colony stimulating factor activity

검색결과 66건 처리시간 0.024초

재조합 사람 과립구 콜로니 자극인자인 C,J50001의 중합체의 생물학적 활성과 급성독성에 관한 연구 (Biological Activity and Acute Toxicity of the Multimers of CJ500011 Recombinant Human Granulocyte Colony-stimulating Factor (rHuG-CSF), Produced in E. coli)

  • 하석훈;이현수;김기완;정종상;김달현
    • Biomolecules & Therapeutics
    • /
    • 제6권1호
    • /
    • pp.89-94
    • /
    • 1998
  • CJ50001 is a recombinant human granulocyte colony-stimulating facto, (rHuG-CSF) that stimulates the formation of neutrophils from bone marrow stem cells. It was produced in E. colt and purified through refolding and several processes. We produced CS970125(300) using purified C150001 and additives in order to test the stability of CJ50001. When CS970125(300) was stored at 50'S for more than 1 week, high molecular weight proteins were formed and those proteins were detected by non-reducing SDS-PAGE, gel filtration HPLC, and Western blot. Those proteins showed single band at the same position of CJ50001 in reducing SDS-PAGE. These data indicated that those high molecular weight proteins were the multimers of C150001. In biological assays, iu viro and in viro, the multimers did not have biological activity and inhibitory action to that of CJ 50001. The mutimers did not induce toxicity in mice and rats in acute toxicity test. These results suggest that if Cs970125(300) containing CJ50001 is stored at 5$0^{\circ}C$, CJ50001 will be the multimers that do not have biological activity and inhibitory effect to CJ50001 and do not induce acute toxicity.

  • PDF

Chromatin-remodeling Factor INI1/hSNF5/BAF47 Is Involved in Activation of the Colony Stimulating Factor 1 Promoter

  • Pan, Xuefang;Song, Zhaoxia;Zhai, Lei;Li, Xiaoyun;Zeng, Xianlu
    • Molecules and Cells
    • /
    • 제20권2호
    • /
    • pp.183-188
    • /
    • 2005
  • INI1/hSNF5/BAF47 is a core component of the hSWI/ SNF ATP-dependent chromatin remodeling complex, and it has been implicated in regulating gene expression, cell division and tumorigenesis. We investigated whether INI1/hSNF5/BAF47 functions in activation of the colony stimulating factor 1 (CSF1) promoter in HeLa cells. Overexpression of INI1/hSNF5/BAF47 promoted CSF1 transcription, and siRNA targeting INI1/hSNF5/ BAF47 (siINI1) strongly inhibited the activity of the CSF1 promoter. We demonstrated that all conserved domains of INI1/hSNF5/BAF47 are needed for CSF1 transcription. ChIP experiment showed that INI1/ hSNF5/BAF47 is recruited to the region of the CSF1 promoter. Taken together, these results indicate that INI1/hSNF5/BAF47 is involved in activation of the CSF1 promoter.

Phytoecdysteroid가 조골세포와 파골세포의 성장과 활성에 미치는 영향 (Effects of Phytoecdysteroid on the Proliferation and Activity of Bone Cells)

  • 고선일
    • Journal of Oral Medicine and Pain
    • /
    • 제32권2호
    • /
    • pp.129-135
    • /
    • 2007
  • Ecdysteroid는 곤충의 탈피호르몬으로 알려져 있으며, phytoecdysteroid는 식물의 ecdysteroid로 포유동물에 여러 유용한 효과를 가진다고 알려져 있다. 본 연구는 식물의 phytoecdysteroids가 골대사에서 미치는 영향을 알아보기 위하여 세포수준에서 관찰하였다. 즉 조골세포에 미치는 영향을 알아보기 위하여 세포증식율, 염기성인산분해효소 활성, gelatinase 활성의 변화를 관찰하였고, 파골세포에 미치는 영향을 알아보기 위하여 tartrate-저항성 인산분해효소 양성인 다핵세포의 형성을 측정함으로써 관찰하였다. Phytoecdysteroid 처리에 의해 조골세포의 ALP 활성과, gelatinase의 활성이 증가되었다. 또한 phytoecdysteroid는 macrophage-colony stimulating factor (M-CSF)와 receptor activator of NF-kB ligand (RANKL)에 의해 유도된 파골세포의 생성을 감소시켰다. 이상의 결과 phytoecdysteroid는 조골세포와 파골세포의 활성 및 생성을 변화 시킴으로써 골수의 미세환경에서 세포내 조절작용에 관여하리라 여겨진다.

A Simple Purification Procedure of Biologically Active Recombinant Human Granulocyte Macrophage Colony Stimulating Factor (hGM-CSF) Secreted in Rice Cell Suspension Culture

  • Sharma Niti;Park Seung Moon;Kwon Tae Ho;Kim Dae Hyuk;Yang Moon Sik
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제9권6호
    • /
    • pp.423-427
    • /
    • 2004
  • A simple purification procedure of bioactive human granulocyte macrophage colony stimulating factor (hGM-CSF) secreted in rice cell suspension culture has previously been described. In this study the protein was purified to apparent homogeneity with an overall yield of $80.1\%$ by ammonium sulfate precipitation and a single chromatographic step involving FPLCanion exchange chromatography. The purified hGM-CSF revealed at least five glycosylated forms ranging from $21.5{\~}29$ kDa, and its biological activity was independent of the glycosylation pattern. This is the first purification report of recombinant hGM-CSF to apparent homogeneity from rice cell suspension cultures.

Enhanced biological effects of Phe140Asn, a novel human granulocyte colony-stimulating factor mutant, on HL60 cells

  • Chung, Hee-Kyoung;Kim, Sung-Woo;Byun, Sung-June;Ko, Eun-Mi;Chung, Hak-Jae;Woo, Jae-Seok;Yoo, Jae-Gyu;Lee, Hwi-Cheul;Yang, Byoung-Chul;Kwon, Moo-Sik;Park, Soo-Bong;Park, Jin-Ki;Kim, Kyung-Woon
    • BMB Reports
    • /
    • 제44권10호
    • /
    • pp.686-691
    • /
    • 2011
  • Granulocyte colony-stimulating factor (G-CSF) is a cytokine secreted by stromal cells and plays a role in the differentiation of bone marrow stem cells and proliferation of neutrophils. Therefore, G-CSF is widely used to reduce the risk of serious infection in immunocompromised patients; however, its use in such patients is limited because of its non-persistent biological activity. We created an N-linked glycosylated form of this cytokine, hG-CSF (Phe140Asn), to assess its biological activity in the promyelocyte cell line HL60. Enhanced biological effects were identified by analyzing the JAK2/STAT3/survivin pathway in HL60 cells. In addition, mutant hG-CSF (Phe140Asn) was observed to have enhanced chemoattractant effects and improved differentiation efficiency in HL60 cells. These results suggest that the addition of N-linked glycosylation was successful in improving the biological activity of hG-CSF. Furthermore, the mutated product appears to be a feasible therapy for patients with neutropenia.

Gallic acid가 Lipopolysaccharide로 활성화된 마우스 대식세포의 케모카인과 성장인자 생성에 미치는 영향 (Inhibitory Effect of Gallic acid on Production of Chemokine and Growth Factor in Mouse Macrophage Stimulated by Lipopolysaccharide)

  • 박완수
    • 동의생리병리학회지
    • /
    • 제24권4호
    • /
    • pp.586-591
    • /
    • 2010
  • Chemokine and Growth Factor are major mediumtors of immuno-inflammatory pathway. The purpose of this study is to investigate whether productions of Chemokine and Growth Factor in lipopolysaccharide (LPS)-induced mouse macrophage RAW 264.7 cells are modulated by Gallic acid (GA), which is easily founded in tannin-containing natural materials such as red wine, green tea, grape juice, and Corni Fructus. Productions of Chemokine and Growth Factor were analyzed by High-throughput Multiplex Bead based Assay with Bio-plex Suspension Array System based on $xMAP^{(R)}$ (multi-analyte profiling beads) technology. At first, cell culture supernatant was obtained after treatment with LPS and GA for 24 hour. Then, the antibody-conjugated beads were added and incubated for 30 minutes. After incubation, detection antibody was added and incubated for 30 minutes. And Strepavidin-conjugated Phycoerythrin (SAPE) was added. After incubation for 30 minutes, the level of SAPE fluorescence was analyzed on Bio-plex Suspension Array System. Based on fluorescence intensity, concentrations of Chemokine and Growth Factor were determined. The results of the experiment are as follows. GA significantly inhibited the production of interferon-inducible protein (IP)-10, keratinocyte-derived chemokine(KC), and vascular endothelial growth factor (VEGF) in LPS-induced RAW 264.7 cells at the concentration of 25, 50, 100, 200 uM (p<0.05). GA significantly inhibited the production of monocyte chemoattractant protein-1(MCP-1) and macrophage-colony stimulating factor(M-CSF) in LPS-induced RAW 264.7 cells at the concentration of 50, 100, 200 uM (p<0.05). GA diminished the production of granulocyte macrophage-colony stimulating factor (GM-CSF) in LPS-induced RAW 264.7 cells. But GA did not show the inhibitory effect on the production of leukemia inhibitory factor (LIP) and macrophage inflammatory protein (MIP)-2 in LPS-induced RAW 264.7 cells. These results suggest that GA has the immuno-modulating activity related with its inhibitory effects on the production of IP-10, KC, MCP-1, VEGF, and M-CSF in LPS-induced macrophages.

대황 추출물이 골수유래 대식세포의 파골세포 분화에 미치는 영향 (Effects of rhubarb extract on osteoclast differentiation in bone marrow-derived macrophages)

  • In-A Cho
    • 한국치위생학회지
    • /
    • 제23권4호
    • /
    • pp.219-226
    • /
    • 2023
  • 연구목적: 이 연구는 대황 추출물이 골수 유래 대식세포(BMM)에서 파골세포 분화에 미치는 영향을 조사하는 것을 목적으로 한다. 파골 세포는 골 재흡수 및 재형성에 중요한 역할을 하며, 파골 세포의 조절 장애는 다양한 골 관련 질환을 유발할 수 있다. 잠재적인 항염증 특성을 가진 약용 식물인 대황은 뼈 대사를 조절하는 것으로 제안되었다. 연구방법: 생후 5주령의 C57BL/6 마우스의 대퇴골과 경골에서 BMM을 분리하고 M-CSF(mouse macrophage colony-stimulating factor) 존재하에 3일간 배양한 후 M-CSF와 파골 세포 분화를 유도하기 위한 핵 인자-κB 리간드(RANKL)의 활성화제를 처리하였다. 연구결과: 대황 추출물로 처리하면 BMM에서 파골 세포 분화가 현저하게 억제되었다. 또한 대황 추출물은 파골세포 형성에 필수적인 유전자인 TRAP(tartrate-resistant acid phosphatase) 및 CTSK(cathepsin K)의 mRNA 발현을 억제하였다. 또한 파골세포 분화에 중요한 전사 인자인 활성화된 T 세포 c1(NFATc1)의 핵 인자의 RANKL 유도 발현을 억제하였다. 결론: 이러한 결과는 대황 추출물이 BMMs에서 파골 세포 형성에 억제 효과가 있음을 나타낸다. 따라서 대황 추출물은 비정상적인 파골 세포 활동과 관련된 뼈 관련 질환의 치료를 위한 유망한 치료제이다. 잠재적인 임상 적용을 완전히 이해하기 위해서는 메커니즘에 대한 추가 연구와 탐색이 필요하다.

유전자 재조합 인간의 G-CSF의 생리활성과 EGFP-hG-CSF유전자가 도입된 체세포의 분리 (Biological Activity of Recombinant Human Granulocyte Colony-Stimulating Factor and Isolation of the Somatic Cell Transfected EGFP-hG-CSF Gene)

  • 박종주;민관식
    • 생명과학회지
    • /
    • 제18권7호
    • /
    • pp.912-917
    • /
    • 2008
  • 유전자재조합 hG-CSF의 생리활성을 분석하기 위하여 편상의 암세포로부터 분리되어진 cDNA를 이용하여 hG-CSF 유전자를 분리하여 동물세포(CHO cell lines)를 이용하여 재조합 단백질을 생산하였다. 재조합 단백질의 체내 생리활성을 분석하기 위하여0일과 2일에 피하주사 후 5일에 혈액을 채취하여 백혈구 수를 분석하였다. 투여 전과 비교하여 5일째에 백혈구 수는 현저하게 증가하였다. 또한, pEGFP-mUII-hG-CSF벡터를 소 태아로부터 분리되어진 체세포에 형질전환을 시켜서, EGFP signal을 나타내는 세포를 confocal를 이용하여 분리하여 수립하였다. 따라서, 이러한 결과는 유전자재조합 hG-CSF는 체내에서 강력한 생리활성을 나타내며, 또한 당쇄가 첨가되어지고 이중으로 연결되어진 새로운 돌연변이체를 포함하여 고 활성 재조합체의 생산이 가능할 것으로 보이며, pEGFP-mUII-hG-CSF벡터는 복제 형질전환 가축 생산을 위하여 유용하게 사용되어질 것으로 사료된다.

Effects of Baicalin on the differentiation and activity of preosteoclasts

  • Ko, Seon-Yle
    • International Journal of Oral Biology
    • /
    • 제34권2호
    • /
    • pp.81-86
    • /
    • 2009
  • Baicalin is a flavonoid purified from the medicinal plant Scutellaria baicalensis. It has been reported that baicalin exhibits antibacterial, anti-inflammatory and analgesic effects. The present study was undertaken to determine the underlying cellular mechanisms of baicalin action in preosteoclasts. The effects of this flavonoid on preosteoclasts were determined by measuring osteoclast generation and osteoclast activity in macrophage-colony stimulating factor (M-CSF)-dependent bone marrow cells (MDBMCs) and in co-cultures of MDBMCs and osteoblasts. Osteoclast generation was assayed by measuring the number of tartrateresistant acid phosphatase (TRAP) (+) multinucleated cells after culture. Osteoclast activity was assayed by measuring the area of the resorption pit after culture. We found that osteoclast generation was induced by M-CSF and receptor activator of NF-kB ligand (RANKL), and by the 1.25-dihydroxycholecalciferol in our cultures. Baicalin decreased both osteoclast generation and activity in MDBM cultures and co-cultures indicating that it may inhibit bone resorption.

Synthesis of Dithiolopyrrolone Derivatives and Their Leukocyte-Increasing Activities

  • Li, Chungang;Sun, Yiping;Wang, Guoping;Tan, Xiangduan
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권12호
    • /
    • pp.3489-3494
    • /
    • 2014
  • In search of new antileukopenia agents, twenty dithiolopyrrolone derivatives were synthesized and evaluated for their leukocyte-increasing activities in normal mice. Among the synthesized compounds 4-23, compounds 5 and 6 showed significant leukocyte-increasing activity ( p < 0.01), and compounds 4, 9 and 16 had a moderate effect ( p < 0.05). Compound 5 also displayed stronger leukocyte-increasing activity than that of the positive recombinant human granulocyte colony stimulating factor (rhG-CSF). Above all, compound 5 would be a potential antileukopenia agent which deserved further research.