• Title/Summary/Keyword: colony morphology

Search Result 192, Processing Time 0.021 seconds

A report of 31 unrecorded bacterial species in South Korea belonging to the class Gammaproteobacteria

  • Jung, Yong-Taek;Bae, Jin-Woo;Jeon, Che Ok;Joh, Kiseong;Seong, Chi Nam;Jahng, Kwang Yeop;Cho, Jang-Cheon;Cha, Chang-Jun;Im, Wan-Taek;Kim, Seung Bum;Yoon, Jung-Hoon
    • Journal of Species Research
    • /
    • v.5 no.1
    • /
    • pp.188-200
    • /
    • 2016
  • During recent screening to discover indigenous prokaryotic species in South Korea, a total of 31 bacterial strains assigned to the class Gammaproteobacteria were isolated from a variety of environmental samples including soil, tidal flat, freshwater, seawater, and plant roots. From the high 16S rRNA gene sequence similarity (>98.7%) and formation of a robust phylogenetic clade with the closest species, it was determined that each strain belonged to each independent and predefined bacterial species. There is no official report that these 31 species have been described in South Korea; therefore 5 species of 3 genera in the order Alteromonadales, 11 species of 3 genera in the order Pseudomonadales, 8 species of 6 genera in the order Enterobacteriales, 2 species of 1 genera in the order Vibrionales, 1 species of 1 genera in the order Oceanospirillales, 3 species of 3 genera in the order Xanthomonadales, and 1 species in the order Spongiibacter_o within the Gammaproteobacteia are reported for proteobacterial species found in South Korea. Gram reaction, colony and cell morphology, basic biochemical characteristics, isolation source, and strain IDs are also described in the species description section.

A report of 21 unreported bacterial species in Korea, belonging to the Betaproteobacteria

  • Kim, Pil Soo;Cha, Chang-Jun;Cho, Jang-Cheon;Chun, Jongsik;Im, Wan-Taek;Jahng, Kwang Yeop;Jeon, Che Ok;Joh, Kiseong;Kim, Seung Bum;Seong, Chi Nam;Yoon, Jung-Hoon;Bae, Jin-Woo
    • Journal of Species Research
    • /
    • v.5 no.1
    • /
    • pp.179-187
    • /
    • 2016
  • As a subset investigation to discover indigenous prokaryotic species in Korea, a total of 21 bacterial strains assigned to the class Betaproteobacteria were isolated from a wide range of environmental samples which collected from fresh water, roots of plants, mineral water and soil from ginseng farm. Phylogenetic analysis based on 16S rRNA gene sequences indicated that 21 isolated strains were most closely related to the class Betaproteobacteria, with high 16S rRNA gene sequence similarity (>99.1%) and constructed a robust phylogenetic clade with the closest species in the class Betaproteobacteria. These isolated species have no previous report or publication in Korea; therefore 17 species in 14 genera of 6 families in the order Burkholderiales, 1 species in the order Methylophilales, 2 species in 2 genera of 1 family in the order Neisseriales are reported for betaproteobacterial species found in Korea. Gram reaction, colony and cell morphology, basic biochemical characteristics, isolation source, and strain IDs are also described in the species description section and as an image.

A report of 26 unrecorded bacterial species in Korea, belonging to the Bacteroidetes and Firmicutes

  • Kim, Haneul;Yoon, Jung-Hoon;Cha, Chang-Jun;Seong, Chi Nam;Im, Wan-Taek;Jahng, Kwang Yeop;Jeon, Che Ok;Kim, Seung Bum;Joh, Kiseong
    • Journal of Species Research
    • /
    • v.5 no.1
    • /
    • pp.166-178
    • /
    • 2016
  • An outcome of the study to discover indigenous prokaryotic species in Korea, a total of 26 bacterial species assigned to the classes Bacteroidetes and Firmicutes were isolated from diverse environmental samples collected from soil, tidal flat, freshwater, seawater, wetland, plant roots, and fermented foods. From the high 16S rRNA gene sequence similarity (>99.0%) and formation of a robust phylogenetic clade with the closest species, it was determined that each strain belonged to each independent and predefined bacterial species. There is no official report that these 26 species have been described in Korea; therefore 14 strains for the order Flavobacteriales and two strains for the order Cytophagales were assigned to the class Bacteroidetes, and 8 strains for the order Bacillales and 4 strains for the order Lactobacillales were assigned to the class Firmicutes are reported for new bacterial species found in Korea. Gram reaction, colony and cell morphology, basic biochemical characteristics, isolation source, and strain IDs are also described in the species description section.

A Simple Embryonic Stem Cell-Based in vitro Differentiation System That Recapitulates Early Erythropoietic Events in the Mouse Embryo (생쥐 배아에서의 초기 적혈구 분화를 재현 할 수 있는 배아주 세포에 기초한 간단한 시험관내 분화체계)

  • 김철근
    • The Korean Journal of Zoology
    • /
    • v.39 no.3
    • /
    • pp.239-247
    • /
    • 1996
  • An embryonic stem (ES) cell-based in vitro model system was examined to determine whether a simple differentiation of embryoid bodies (EB) in the suspension medium is useful to dissect early erythropoiesis. Characteristics of the differentiating EBs were monitored for their differentiation potential to generate hematopoietic cell types by general morphology, benzidine staining and two-step colony assays, and expressivity of several erythroid marker genes by the RT-PCR analysis for total cellular RNA prepared from the differentiating EBs. Every ematopoietic lineage cells were generated from the differentiating EBs with reproducible frequencies, similar to the other sophisticated differentiation protocols. Furthermore, the globin gene switching in differentiating ES cells paralleled the sequence of events found in the mouse embryo, and such that their expression was activated by at least 12 hrs later than those of erythroid-specific transcription factors, GATA-1 and Tal-1 The erythropoietic differentiation program initiated reproducibly and efficiently in this simple differentiation system in a suspension culture, such that this system may be useful for dissection of the molecular events of early erythropoiesis.

  • PDF

Assessment of Bile Salt Effects on S-Layer Production, slp Gene Expression and, Some Physicochemical Properties of Lactobacillus acidophilus ATCC 4356

  • Khaleghi, M.;Kermanshahi, R. Kasra;Yaghoobi, M.M.;Zarkesh-Esfahani, S.H.;Baghizadeh, A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.4
    • /
    • pp.749-756
    • /
    • 2010
  • In many conditions, bacterial surface properties are changed as a result of variation in the growth medium and conditions. This study examined the influence of bile salt concentrations (0-0.1%) on colony morphotype, hydrophobicity, $H_2O_2$ concentration, S-layer protein production, and slpA gene expression in Lactobacillus acidophilus ATCC 4356. It was observed that two types of colonies (R and S) were in the control group and the stress condition. When the bile level increased in the medium, the amount of S type was more than the R type. A stepwise increment in the bile concentration resulted in a stepwise decline in the maximum growth rate. The results showed that hydrophobicity was increased in 0.01%-0.02% bile, but it was decreased in 0.1% bile. Treatment by bile (0.01%-0.1%) profoundly decreased $H_2O_2$ formation. S-Layer protein and slpA gene expression were also altered by the stress condition. S-Protein expression was increased in the stress condition. The slpA gene expression increased in 0.01%-0.05% bile and it decreased in 0.1% bile. However, we found that different bile salt concentrations influenced the morphology and some surface properties of L. acidophilus ATCC 4356. These changes were very different in the 0.1% bile. It appears that the bacteria respond abruptly to 0.1% bile.

Identification of Genes Encoding Heat Shock Protein 40 Family and the Functional Characterization of Two Hsp40s, MHF16 and MHF21, in Magnaporthe oryzae

  • Yi, Mi-Hwa;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • v.24 no.2
    • /
    • pp.131-142
    • /
    • 2008
  • Magnaporthe oryzae, the causal agent of the rice blast disease, poses a worldwide threat to stable rice production. The large-scale functional characterization of genes controlling the pathogenicity of M. oryzae is currently under way, but little is known about heat shock protein 40 (Hsp40) function in the rice blast fungus or any other filamentous plant pathogen. We identified 25 genes encoding putative Hsp40s in the genome of M. oryzae using a bioinformatic approach, which we designated M. oryzae heat shock protein forty (MHF 1-25). To elucidate the roles of these genes, we characterized the functions of MHF16 and MHF21, which encode type ill and type n Hsp40 proteins, respectively. MHF16 and MHF21 expression was not significantly induced by heat shock, but it was down-regulated by cold shock. Knockout mutants of these genes $({\Delta}$mhf16 and ${\Delta}$mhf21) were viable, but conidiation was severely reduced. Moreover, sectoring was observed in the ${\Delta}mhf16$ mutant when it was grown on oatmeal agar medium. Conidial germination, appressorium formation, and pathogenicity in rice were not significantly affected in the mutants. The defects in conidiation and colony morphology were fully complemented by reintroduction of wild type MHF16 and MHF21 alleles, respectively. These data indicate that MHF16 and MHF21 play important roles in conidiation in the rice blast fungus.

Isolation and Characterization of Purple Non-Sulfur Bacteria, Afifella marina, Producing Large Amount of Carotenoids from Mangrove Microhabitats

  • Soon, Tan Kar;Al-Azad, Sujjat;Ransangan, Julian
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.8
    • /
    • pp.1034-1043
    • /
    • 2014
  • This study determined the effect of light intensity and photoperiod on the dry cell weight and total amount of carotenoids in four isolates of purple non-sulfur bacteria obtained from shaded and exposed microhabitats of a mangrove ecosystem in Kota Kinabalu, Sabah, Malaysia. The initial isolation of the bacteria was carried out using synthetic 112 medium under anaerobic conditions (2.5 klx) at $30{\pm}2^{\circ}C$. On the basis of colony appearance, cell morphology, gram staining, motility test, and 16S rRNA gene sequencing analyses, all four bacteria were identified as Afifella marina. One of the bacterial isolates, designated as Af. marina strain ME, which was extracted from an exposed mud habitat within the mangrove ecosystem, showed the highest yield in dry cell weight ($4.32{\pm}0.03g/l$) as well as total carotenoids ($0.783{\pm}0.002mg/g$ dry cell weight). These values were significantly higher than those for dry cell weight ($3.77{\pm}0.02g/l$) and total carotenoid content ($0.706{\pm}0.008mg/g$) produced by the isolates from shaded habitats. Further analysis of the effect of 10 levels of light intensity on the growth characteristics of Af. marina strain ME showed that the optimum production of dry cell weight and total carotenoids was achieved at different light intensities and incubation periods. The bacterium produced the highest dry cell weight of 4.98 g/l at 3 klx in 72 h incubation, but the carotenoid production of 0.783 mg/g was achieved at 2.5 klx in 48 h incubation. Subsequent analysis of the effect of photoperiod on the production of dry cell weight and total carotenoids at optimum light intensities (3 and 2.5 klx, respectively) revealed that 18 and 24 h were the optimum photoperiods for the production of dry cell weight and total carotenoids, respectively. The unique growth characteristics of the Af. marina strain ME can be exploited for biotechnology applications.

Roles of Zinc-responsive Transcription Factor Csr1 in Filamentous Growth of the Pathogenic Yeast Candida albicans

  • Kim, Min-Jeong;Kil, Min-Kwang;Jung, Jong-Hwan;Kim, Jin-Mi
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.242-247
    • /
    • 2008
  • In the fungal pathogen Candida albicans, the yeast-to-hyphal transition occurs in response to a broad range of environmental stimuli and is considered to be a major virulence factor. To address whether the zinc homeostasis affects the growth or pathogenicity of C. albicans, we functionally characterized the zinc-finger protein Csr1 during filamentation. The deduced amino acid sequence of Csr1 showed a 49% similarity to the zinc-specific transcription factor, Zap1 of Saccharomyces cerevisiae. Sequential disruptions of CSR1 were carried out in diploid C. albicans. The csr1/csr1 mutant strain showed severe growth defects under zinc-limited growth conditions and the filamentation defect under hypha-inducing media. The colony morphology and the germ-tube formation were significantly affected by the csr1 mutation. The expression of the hyphae-specific gene HWP1 was also impaired in csr1/csr1 cells. The C. albicans homologs of ZRTl and ZRT2, which are zinc-transporter genes in S. cerevisiae, were isolated. High-copy number plasmids of these genes suppressed the filamentation defect of the csr1/csr1 mutant strain. We propose that the filamentation phenotype of C. albicans is closely associated with the zinc homeostasis in the cells and that Csr1 plays a critical role in this regulation.

AbSte7, a MAPKK Gene of Alternaria brassicicola, Is Involved in Conidiation, Salt/Oxidative Stress, and Pathogenicity

  • Xu, Houjuan;Zhang, Qianqian;Cui, Wenjuan;Zhang, Xiaofei;Liu, Weiyang;Zhang, Li;Islam, Md. Nurul;Baek, Kwang-Hyun;Wang, Yujun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1311-1319
    • /
    • 2016
  • Alternaria brassicicola (Schwein.) invades Brassicaceae and causes black spot disease, significantly lowering productivity. Mitogen-activated protein kinases (MAPKs) and their upstream kinases, including MAPK kinases (MAPKKs) and MAPKK kinases (MAPKKK), comprise one of the most important signaling pathways determining the pathogenicity of diverse plant pathogens. The AbSte7 gene in the genome of A. brassicicola was predicted to be a homolog of yeast Ste7, a MAPKK; therefore, the function was characterized by generating null mutant strains with a gene replacement method. AbSte7 replacement mutants (RMs) had a slower growth rate and altered colony morphology compared with the wild-type strain. Disruption of the AbSte7 gene resulted in defects in conidiation and melanin accumulation. AbSte7 was also involved in the resistance pathways in salt and oxidative stress, working to negatively regulate salt tolerance and positively regulate oxidative stress. Pathogenicity assays revealed that AbSte7 RMs could not infect intact cabbage leaves, but only formed very small lesions in wounded leaves, whereas typical lesions appeared on both intact and wounded leaves inoculated with the wild-type strain. As the first studied MAPKK in A. brassicicola, these data strongly suggest that the AbSte7 gene is an essential element for the growth, development, and pathogenicity of A. brassicicola.

Isolation of Antibiotic-Producing Actinomycetes Antagonistic to Phytophthora capsici from Pepper-Growing Soils (고추 재배토양(栽培土壤)에서 Phytophthora capsid에 길항효과(拮抗效果)가 있는 항생작물생성(抗生物質生成) 방선균(放線菌)의 분리(分離))

  • Ahn, Sang-Joon;Hwang, Byung-Kook
    • The Korean Journal of Mycology
    • /
    • v.20 no.3
    • /
    • pp.259-268
    • /
    • 1992
  • Fifty-three actinomycetes antagonistic to Phytophthora capsici and Magnaporthe grisea were isolated from rhizosphere soils in six pepper-growing areas and ashore soils. Thirty-two antagonistic actinomycetes, showing inhibition zone larger than 5 mm, were classified into 20 groups according to their colony morphology and color. The antagonistic activity against P. capsici greatly varied, which showed inhibition zone sizes in the ranges from 5.7 to 17.5 mm on V-8 juice agar and from 2.5 to 17 mm on tryptic soy agar. The antagonistic activity of some actinomycetes tested was remarkably different between the two test media. The antagonists showed a relatively broad antifungal spectrum, but their antibacterial activity was negligible, except for Pseudomonas solanacearum. Butanol extracts of culture filtrates from antagonistic actinomycetes inhibited mycelial growth of P. capsici and M. grisea, thereby confirming strongly antibiotic production in culture. Culture filtrates of some antagonistic actinomycetes completely inhibited Phytophthora blight in pepper plants.

  • PDF