• 제목/요약/키워드: collocated control

검색결과 54건 처리시간 0.019초

직접속도 피드백을 이용한 보의 능동진동제어 (Active Vibration Control of a Beam using Direct Velocity Feedback)

  • 이영섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.587-592
    • /
    • 2004
  • Direct velocity feedback (DVFB) control is known that it offers an unconditional stability with very high performance when the control strategy is applied at a point collocated sensor and actuator pair, because the sensor-actuator pair has strictly positive real (SPR) property. In this paper, two types of collocated sensor-actuator pairs are considered for practical active vibration control of a structure. They are a point collocated sensor-actuator pair and a point sensor-distributed actuator pair. Both pairs with DVFB sho robust stability and performance. It is noted that the collocated point sensor-actuator ultimately acts as a 'skyhook' damper, but the point sensor-distributed actuator pair with DVFB acts as a 'skyhook' rotational dmaper pair.ational dmaper pair.

  • PDF

보의 능동진동제어을 통한 직접속도 피드백의 적용성 연구 (Active Vibration Control of a Beam Using Direct Velocity Feedback)

  • 이영섭
    • 한국소음진동공학회논문집
    • /
    • 제14권7호
    • /
    • pp.619-625
    • /
    • 2004
  • Direct velocity feedback (DVFB) control is known that it offers an unconditional stability with very high performance when the control strategy is applied at a point collocated sensor and actuator pair. because the sensor-actuator pair has strictly positive real (SPR) property In this paper, two types of collocated sensor-actuator pairs are considered for practical active vibration control of a structure. They are a Point collocated sensor-actuator pair and a point sensor-distributed actuator pair. Both pairs with DVFB show robust stability and performance. It is noted that the collocated point sensor-actuator ultimately acts as a “skyhook” damper, hut the point sensor-distributed actuator pair with DVFB acts as a “skyhook” rotational damper pair.

자기베어링 제어용 동위형 축전 센서의 설계 (Collocated Capacitance Sensor Design for Magnetic Bearing Control)

  • 신동원;김종원
    • 한국정밀공학회지
    • /
    • 제13권10호
    • /
    • pp.146-153
    • /
    • 1996
  • This paper presents the development of a collocated capacitance sensor and its application to the controller design for magnetic bearing supported rotor systems. The main feature of the sensor is that it is made of a compact printed circuit board(PCB) so that it can be built into the actuator coil of the magnetic bearing unit. The singnal processing unit hax been also developed. The experi- mental results of the sensor performance evaluation on sensitivity, bandwidth and resolution are presented. Then, simulation study shows the advantages of the collocated sensor for magnetic bearings over the nonco- llocated sensor. Finally, the experimental result on the performance of the collocated sensor based contrl- ler for a magnetic bearing rotor system is presented.

  • PDF

압전세라믹을 이용한 지능 복합적층판의 강제진동의 능동제어 (Active Control of Forced Vibrations in Smart Laminated Composite Plates Using Piezoceramics)

  • 강영규;구근회;박현철
    • 한국소음진동공학회논문집
    • /
    • 제11권6호
    • /
    • pp.193-199
    • /
    • 2001
  • Active control of forced vibration of the cantilevered laminated composite plates using collocated piezoceramic sensor/actuator is analyzed numerically and verified experimentally for various fiber orientations. Impact on the stiffness and the damping properties is studied by varying stacking sequence of [$\theta$$_{4}$O$_{2}$90$_{2}$]s for the laminated composite plate. For the forced vibration control, the plate is excited by one pair of collocated PZT exciters in resonance and its vibrational response is suppressed by the other collocated PZT sensor/actuator using direct negative velocity feedback. It is shown that the active control of forced vibration is more effective for the smart laminated plate with higher modal damped stiffness(2ζ$\omega$/aup 2/) .

  • PDF

지능판에 동위치화된 압전 센서-액추에이터의 응답특성 연구 (Response between Collocated Sensor and Actuator Bonded on a Smart Panel)

  • 이영섭
    • 한국소음진동공학회논문집
    • /
    • 제17권3호
    • /
    • pp.264-273
    • /
    • 2007
  • A smart panel with structural sensors and actuators for minimizing noise radiation or transmission is described in the paper with the concept of active structural acoustical control. The sensors and actuators are both quadratically shaped piezoelectric polyvinylidene fluoride(PVDF) Polymer films to implement a volume velocity sensor and uniform force actuator respectively. They are collocated on either side of the panel to take advantage of direct velocity feedback(DVFB) strategy, which can guarantee a robust stability and high performance as long as the sensor-actuator response is strictly positive real(SPR). However, the measured sensor-actuator response of the panel showed unexpected result with non-SPR property. In the paper, the reason of the non-SPR property is investigated by theoretical analysis, computer simulation and experimental verification. The investigation reveals that the arrangement of collocated piezoelectric PVDF sensor and actuator pair on a panel is not relevant to get a high feedback gain and good performance with DVFB strategy.

Sensor and actuator design for displacement control of continuous systems

  • Krommer, Michael;Irschik, Hans
    • Smart Structures and Systems
    • /
    • 제3권2호
    • /
    • pp.147-172
    • /
    • 2007
  • The present paper is concerned with the design of distributed sensors and actuators. Strain type sensors and actuators are considered with their intensity continuously distributed throughout a continuous structure. The sensors measure a weighted average of the strain tensor. As a starting point for their design we introduce the concept of collocated sensors and actuators as well as the so-called natural output. Then we utilize the principle of virtual work for an auxiliary quasi-static problem to assign a mechanical interpretation to the natural output of the sensors to be designed. Therefore, we take the virtual displacements in the principle of virtual work as that part of the displacement in the original problem, which characterizes the deviation from a desired one. We introduce different kinds of distributed sensors, each of them with a mechanical interpretation other than a weighted average of the strain tensor. Additionally, we assign a mechanical interpretation to the collocated actuators as well; for that purpose we use an extended body force analogy. The sensors and actuators are applied to solve the displacement tracking problem for continuous structures; i.e., the problem of enforcing a desired displacement field. We discuss feed forward and feed back control. In the case of feed back control we show that a PD controller can stabilize the continuous system. Finally, a numerical example is presented. A desired deflection of a clamped-clamped beam is tracked by means of feed forward control, feed back control and a combination of the two.

PPF와 SRF 조합기법을 사용한 지능구조물의 능동진동제어 (Vibration Suppression of Smart Structures Using a Combined PPF-SRF Control Technique)

  • 곽문규;라완규;윤광준
    • 소음진동
    • /
    • 제7권5호
    • /
    • pp.811-817
    • /
    • 1997
  • This paper is concerned with the active vibration controller design for the grid structure based on the positive position feedback (PPF) and the strain rate feedback (SRF) control. A new control methodology by the combination of the PPF and SRF control can suppress all the modes of the structure theoretically and can be easily implemented with analog circuits. The underlying concept for the design of the new controller is that the SRF controller stabilizes the modes higher than the second mode and the PPF controller stabilizes the fundamental mode which is destabilized by the SRF controller. In order for the new controller to be implemented succesfully, the collocated control is necessary. To this end, the piezoceramic sensor and actuator are located as close as possible, thus realizing the nearly collocated control. The combined PPF and ARF controller proves its effectiveness by experiments.

  • PDF

Data fusion based improved Kalman filter with unknown inputs and without collocated acceleration measurements

  • Lei, Ying;Luo, Sujuan;Su, Ying
    • Smart Structures and Systems
    • /
    • 제18권3호
    • /
    • pp.375-387
    • /
    • 2016
  • The classical Kalman filter (KF) can provide effective state estimation for structural identification and vibration control, but it is applicable only when external inputs are measured. So far, some studies of Kalman filter with unknown inputs (KF-UI) have been proposed. However, previous KF-UI approaches based solely on acceleration measurements are inherently unstable which leads to poor tracking and fictitious drifts in the identified structural displacements and unknown inputs in the presence of measurement noises. Moreover, it is necessary to have the measurements of acceleration responses at the locations where unknown inputs applied, i.e., with collocated acceleration measurements in these approaches. In this paper, it aims to extend the classical KF approach to circumvent the above limitations for general real time estimation of structural state and unknown inputs without using collocated acceleration measurements. Based on the scheme of the classical KF, an improved Kalman filter with unknown excitations (KF-UI) and without collocated acceleration measurements is derived. Then, data fusion of acceleration and displacement or strain measurements is used to prevent the drifts in the identified structural state and unknown inputs in real time. Such algorithm is not available in the literature. Some numerical examples are used to demonstrate the effectiveness of the proposed approach.

동위형 축전 센서가 장착된 자기베어링의 4 축 분산식 제어 (4-Axis Decentralized Control of Magnetic Bearing Equipped whth Collocatd Capacitance Sensor)

  • 신동원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.336-340
    • /
    • 1996
  • This paper presents the development of a collocated capacitance sensor and its application to the decentralized PID controller design for 4-axis magnetic bearing system. The main feature of the sensor is that it is made of a compact printed circuit board (PCB) so that it can be built in to the actuator coil of the magnetic bearing unit. The signal processing unit has been also developed. Then, decentralized PED controller is designed using simplified rotor system model. Finally, the experimental results on the performance of the collocated sensor based decentralized PID controller for a magnetic bearing rotor system is presented.

  • PDF

H2 Design for Active Vibration Control of a Cantilever Beam

  • Park, Sooyoung;Joonhong Jung;Park, Kiheon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.59.6-59
    • /
    • 2002
  • $\textbullet$ An experiment for the active vibration control of a cantilever beam is performed. $\textbullet$ An active damping system consisting of a laser sensor and an electromagnetic actuator. $\textbullet$ The design procedure and the performance analysis of an H2 controller for non-collocated systems. $\textbullet$ Simulations and experiments are performed to verify the performances of the controller. $\textbullet$ The optimal H2 controller is designed based on a reduced order model. $\textbullet$The Sensitivity function is introduced to analyze the Spillover phenomenon. $\textbullet$ Active vibration control, Cantilever beam, H2 controller, spillover, Non-collocated system.

  • PDF