• Title/Summary/Keyword: collision detection

Search Result 373, Processing Time 0.025 seconds

An Efficient Collision Queries in Parallel Close Proximity Situations

  • Kim, Dae-Hyun;Choi, Han-Soo;Kim, Yeong-Dong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2402-2406
    • /
    • 2005
  • A collision query determines the intersection between given objects, and is used in computer-aided design and manufacturing, animation and simulation systems, and physically-based modeling. Bounding volume hierarchies are one of the simplest and most widely used data structures for performing collision detection on complex models. In this paper, we present hierarchy of oriented rounded bounding volume for fast proximity queries. Designing hierarchies of new bounding volumes, we use to combine multiple bounding volume types in a single hierarchy. The new bounding volume corresponds to geometric shape composed of a core primitive shape grown outward by some offset such as the Minkowski sum of rectangular box and a sphere shape. In the experiment of parallel close proximity, a number of benchmarks to measure the performance of the new bounding box and compare to that of other bounding volumes.

  • PDF

Collision-free Flight Planning for Cooperation of Multiple Unmanned Aerial Vehicles (다중 무인 항공기의 협동 작업을 위한 무 충돌 비행 계획)

  • Park, Jae-Byung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.2
    • /
    • pp.63-70
    • /
    • 2012
  • The collision-free flight planning method based on the extended collision map is proposed for cooperation of multiple unmanned aerial vehicles (UAVs) in a common 3-dimensional workspace. First, a UAV is modeled as a sphere, taking its 3-D motions such as rolling into consideration. We assume that after entering the common workspace, the UAVs move along their straight paths until they depart from the workspace, and that the priorities of the UAVs are determined in advance. According to the assumptions, the collision detection problem between two spheres in $R^3$ can be reduced into the collision detection problem between a circle and a line in $R^2$. For convenience' sake and safety, the collision regions are approximated by collision boxes. Using the collision boxes, the entrance times of the UAVs are scheduled for collision avoidance among the UAVs. By this way, all UAVs can move in the common workspace without collisions with one another. For verifying the effectiveness of the proposed flight planning method, the simulation with 12 UAVs is carried out.

An Animation Speed-independent Collision Detection Algorithm (애니메이션 속도에 무관한 충돌 탐지 알고리즘)

  • 김형석
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.3_4
    • /
    • pp.247-256
    • /
    • 2004
  • This paper presents an efficient collision detection algorithm the performance of which is independent of animation speed. Most of the previous collision detection algorithms are incremental and discrete methods, which find out the neighborhood of the extreme vertex at the previous time instance in order to get an extreme vertex at each time instance. However, if an object collides with another one with a high torque, then the angular speed becomes faster. Hence, the candidate by the incremental algorithms may be farther from the real extreme vertex at this time instance. Therefore, the worst time complexity nay be $O(n^2)$, where n is the number of faces. Moreover, the total time complexity of incremental algorithms is dependent on the time step size of animation because a smaller time step yields more frequent evaluation of Euclidean distance. In this paper, we propose a new method to overcome these drawbacks. We construct a spherical extreme vertex diagram on Gauss Sphere, which has geometric properties, and then generate the distance function of a polyhedron and a plane by using this diagram. In order to efficiently compute the exact collision time, we apply the interval Newton method to the distance function.

Manipulator Path Planning Using Collision Detection Function in Virtual Environment (가상환경에서의 충돌감지기능을 이용한 조작기 경로계획)

  • 이종열;김성현;송태길;정재후;윤지섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1651-1654
    • /
    • 2003
  • The process equipment for handling high level radioactive materials, such as spent nuclear fuel, is operated within a sealed facility, called a hot cell, due to high radioactivity. Thus, this equipment should be maintained and repaired by remotely operated manipulator. In this study, to carry out the sale and effective maintenance of the process equipment installed in the hot cell by a servo type manipulator, a collision free motion planning method of the manipulator using virtual prototyping technology is suggested. To do this, the parts are modelled in 3-D graphics, assembled, and kinematics are assigned and the virtual workcell is implemented in the graphical environment which is the same as the real environment. The method proposed in this paper is to find the optimal path of the manipulator using the function of the collision detection in the graphic simulator. The proposed path planning method and this graphic simulator of manipulator can be effectively used in designing of the maintenance processes for the hot cell equipment and enhancing the reliability of the spent fuel management.

  • PDF

Bitwise Collision Attack Based on Second-Order Distance

  • Wang, Danhui;Wang, An
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1802-1819
    • /
    • 2017
  • Correlation-enhanced collision attack has been proposed by Moradi et al. for several years. However, in practical operations, this method costs lots of time on trace acquisition, storage and averaging due to its bytewise collision detection. In this paper, we propose a bitwise collision attack based on second-order distance model. In this method, only 9 average traces are enough to finish a collision attack. Furthermore, two candidate models are given in this study to distinguish collisions, and the corresponding practical experiments are also performed. The experimental results indicate that the operation time of our attack is only 8% of that of correlation-enhanced collision attack, when the two success rates are both above 0.9.

Using Piecewise Circular Curves as a 2D Collision Primitive

  • Ollington, Robert
    • Asia-Pacific Journal of Business
    • /
    • v.9 no.2
    • /
    • pp.1-13
    • /
    • 2018
  • Physics simulation is an important part of many interactive 2D applications and collision detection and response is key component of this simulation. While methods for reducing the number of collision tests that need to be performed has been well researched, methods for performing the final checks with collision primitives have seen little recent development. This paper presents a new collision primitive, the n-arc, constructed from piecewise circular curves or biarcs. An algorithm for performing a collision check between these primitives is presented and compared to a convex polygon primitive. The n-arc is shown to exhibit similar, though slightly slower, performance to a polygon when no collision occurs, but is considerably faster when a collision does occur. The goodness of fit of the new primitive is also compared to a polygon. While the n-arc often gives a looser fit in terms of area, the continuous tangents of the n-arcs makes them a good choice for organic, soft or curved surfaces.

  • PDF

A Study for an Early Detection Method on Altering Course of a Target Ship using the Steering Wheel Signal (조타기 신호를 이용한 선회조기감지 방안에 대한 연구)

  • Jung, Chang-Hyun;Hong, Tae-Ho;Park, Gyei-Kark;Park, Young-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.1
    • /
    • pp.17-22
    • /
    • 2013
  • If we were in a head-on or crossing situation with a target ship and did not know the target ship's intention to change her course, we might be confused about our decision making to change our course for collision avoidance and be in a danger of collision. In order to solve these problems, we need to develop an automatic system which enables mariners to easily detect a change in the target ship's course and efficiently avoid being on a collision course. In this paper, we proposed an early detection method on altering course of a target ship using the steering wheel signal. This method will contribute to the reduction of collision accidents and also be used to the VTS system and the analysis of marine accidents.

K-Means Clustering Algorithm and CPA based Collinear Multiple Static Obstacle Collision Avoidance for UAVs (K-평균 군집화 알고리즘 및 최근접점 기반 무인항공기용 공선상의 다중 정적 장애물 충돌 회피)

  • Hyeji Kim;Hyeok Kang;Seongbong Lee;Hyeongseok Kim;Dongjin Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.427-433
    • /
    • 2022
  • Obstacle detection, collision recognition, and avoidance technologies are required the collision avoidance technology for UAVs. In this paper, considering collinear multiple static obstacle, we propose an obstacle detection algorithm using LiDAR and a collision recognition and avoidance algorithm based on CPA. Preprocessing is performed to remove the ground from the LiDAR measurement data before obstacle detection. And we detect and classify obstacles in the preprocessed data using the K-means clustering algorithm. Also, we estimate the absolute positions of detected obstacles using relative navigation and correct the estimated positions using a low-pass filter. For collision avoidance with the detected multiple static obstacle, we use a collision recognition and avoidance algorithm based on CPA. Information of obstacles to be avoided is updated using distance between each obstacle, and collision recognition and avoidance are performed through the updated obstacles information. Finally, through obstacle location estimation, collision recognition, and collision avoidance result analysis in the Gazebo simulation environment, we verified that collision avoidance is performed successfully.

Feature Map for Collision Detection in Motion-Based Game using Web Camera (웹 카메라를 이용한 체감형 게임의 충돌감지를 위한 특징맵)

  • Lee, Young-Jae;Lee, Dae-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.620-626
    • /
    • 2008
  • We propose a feature map method to detect a collision for a motion-based game. The feature map can be made an optimally reduced motion data using subtraction image and virtual ball images according to image size and condition. And we calculate the overlapped ratio between moving image data and objects. This ratio is an invariant for detection even though image size is changed. And we compare this ration with collision detection constant, the feature map can detect fast collisions as well as the collided direction. To evaluate the method, we implemented a motion-base game that consists of a web cam, a player, an enemy, and some virtual balls, and we obtained some valid results for our method for the collision detection. The results demonstrated that the proposed approach is robust, and they can be used as a basic collide detection algorithm for a motion-based game where the size and the position of characters are continuously changing.

A Logical Model of Collision Response for Simulation of the Virtual Environment (가상환경의 시뮬레이션을 위한 충돌반응 양상의 논리적 모델링)

  • Kim Byung-Ju;Park Jong-Hee
    • The KIPS Transactions:PartB
    • /
    • v.11B no.7 s.96
    • /
    • pp.821-830
    • /
    • 2004
  • In this paper, we model the downward collision of a falling object to the base. We aim to provide maximum diversity of response to physical. collision. To this end, the primary design concern of the model is to unfold the collision phenomenon in a logical and natural manner, detailed enough to construct an immersive virtual environment. To achieve these requirements, first we determine domains for the characteristic of the material of the falling objects, and select the dominant force of the collision. We formulate the collision phenomena with combination of primitive attributes and their relationships. The formulated function evaluates the results of the collision in qualitative aspects as well as in quantitative aspects. Between the collision issues, 'Collision Detection' and 'Collision Response', this paper focuses on Collision Response issue.