• Title/Summary/Keyword: collision algorithm

Search Result 927, Processing Time 0.029 seconds

Tag Anti-Collision Algorithms in Passive and Semi-passive RFID Systems -Part I : Adjustable Framed Q Algorithm and Grouping Method by using QueryAdjust Command- (수동형/반능동형 RFID 시스템의 태그 충돌 방지 알고리즘 -Part I : QueryAdjust 명령어를 이용한 AFQ 알고리즘과 Grouping에 의한 성능개선-)

  • Song, In-Chan;Fan, Xiao;Chang, Kyung-Hi;Shin, Dong-Beom;Lee, Heyung-Sub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8A
    • /
    • pp.794-804
    • /
    • 2008
  • In this paper, we analyze the performance of probabilistic slotted anti-collision algorithm used in EPCglobal Class-1 Generation-2 (Gen2). To increase throughput and system efficiency, and to decrease tag identification time and collision ratio, we propose new tag anti-collision algorithms, which are FAFQ (fired adjustable flamed Q) algorithm and AAFQ (adaptive adjustable framed Q) algorithm, by using QueryAdjust command. We also propose grouping method based on Gen2 to improve the efficiency of tag identification. The simulation results show that all the proposed algorithms outperform Q algorithm, and AAFQ algorithm performs the best. That is, AAFQ has an increment of 5% of system efficiency and a decrement of 4.5% of collision ratio. For FAFQ and AAFQ algorithm, the performance of grouping method is similar to that of ungrouping method. However, for Q algorithm in Gen2, grouping method can increase throughput and system efficiency, and decrease tag identification time and collision ratio compared with ungrouping method.

Improvement and Performance Analysis of Hybrid Anti-Collision Algorithm for Object Identification of Multi-Tags in RFID Systems (RFID 시스템에서 다중 태그 인식을 위한 하이브리드 충돌방지 알고리즘의 개선 및 성능 분석)

  • Choi, Tae-Jeong;Seo, Jae-Joon;Baek, Jang-Hyun
    • IE interfaces
    • /
    • v.22 no.3
    • /
    • pp.278-286
    • /
    • 2009
  • The anti-collision algorithms to identify a number of tags in real-time in RFID systems are divided into the anti-collision algorithms based on the Framed slotted ALOHA that randomly select multiple slots to identify the tags, and the anti-collision algorithms based on the Tree-based algorithm that repeat the questions and answer process to identify the tags. In the hybrid algorithm which is combined the advantages of these algorithms, tags are distributed over the frames by selecting one frame among them and then identified by using the Query tree frame by frame. In this hybrid algorithm, however, the time of identifying all tags may increase if many tags are concentrated in a few frames. In this study, to improve the performance of the hybrid algorithm, we suggest an improved algorithm that the tags select a specific group of frames based on the earlier bits of the tag ID so that the tags are distribute equally over the frames. By using the simulation and mathematical analysis, we show that the suggested algorithm outperforms traditional hybrid algorithm from the viewpoint of the number of queries per frame and the time of identifying all tags.

Pulse Protocol-based Hybrid Reader Anti-collision Algorithm using Slot-occupied Probability under Dense Reader Environment (밀집 리더 환경 하에서 슬롯 점유확률을 이용한 Pulse Protocol 기반의 Hybrid 리더 충돌방지 알고리즘)

  • Song, In-Chan;Fan, Xiao;Yoon, Hee-Seok;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10A
    • /
    • pp.987-996
    • /
    • 2008
  • In this paper, the conventional anti-collision algorithms, such as Channel Monitoring algorithm and Pulse Protocol algorithm are analyzed. To decrease tag identification time, and increase system throughput and efficiency, we propose a new reader anti-collision algorithm, Pulse Protocol-based Hybrid Reader Anti-collision Algorithm, using Slot-occupied Probability under dense reader environment. The proposed algorithm uses Slot-occupied Probability to improve the performance of Pulse Protocol Algorithm. That is, A reader checks Slot-occupied Probability after generating random backoff time. If Slot-occupied Probability is greater than 0, it uses another new random backoff time to avoid reader collision. We also compare the performance of the proposed algorithm with those of Channel Monitoring and Pulse Protocol algorithms in respect of identification time system throughput, and system efficiency. Simulation results show that the proposed algorithm has an increment of 5% of identification time and system throughput as increasing the number of readers.

Proportional Navigation-Based Optimal Collision Avoidance for UAVs (비례항법을 이용한 무인 항공기의 최적 충돌 회피 기동)

  • 한수철;방효충
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1065-1070
    • /
    • 2004
  • Optimal collision avoidance algorithm for unmanned aerial vehicles based on proportional navigation guidance law is investigated this paper. Although proportional navigation guidance law is widely used in missile guidance problems, it can be used in collision avoidance problem by guiding the relative velocity vector to collision avoidance vector. The optimal navigation coefficient can be obtained if an obstacle if an obstacle moves at constant velocity vector. The stability of the proposed algorithm is also investigated. The stability can be obtained by choosing a proper navigation coefficient.

Development of Sensor Fusion-Based Low-Speed Short-Distance Collision Warning Algorithm for Urban Area (도시 환경을 위한 센서 융합 기반 저속 근거리 충돌 경보 알고리즘 개발)

  • Jeon, Jong-Ki;Kim, Man-Ho;Lee, Suk;Lee, Kyung-Chang
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.3
    • /
    • pp.157-167
    • /
    • 2011
  • Although vehicles become more intelligent for convenience and safety of drivers, traffic accidents are increased more and more. Especially, car-to-car single rear impacts in the urban area are increased rapidly because of driver inattention. To prevent rear impacts in the urban area, commercial automobile vendor applies the low-speed short-distance collision warning system. This paper presents low-speed short-distance collision warning algorithm for the city driving by using sensor fusion of laser sensor and ultrasonic sensor. An experiment using embedded microprocessor in the driving track was used to demonstrate the feasibility of the collision warning algorithm.

Fast Anti-Collision Algorithm Using Pre-distributed Random Address (미리 분배된 난수를 이용하는 빠른 충돌방지 알고리즘)

  • Kang Jeon il;Park Ju sung;Nyang Dae hun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.3A
    • /
    • pp.184-194
    • /
    • 2005
  • One of the most important factors that decide the overall performance of RFID system is anti-collision algorithm. By enhancing the anti-collision algorithm, we can increase the number of RFID tags that can be processed in unit time. Two anti-collision algorithms are most widely prevailed: one is ALOHA-based protocol and the other is a binary tree walking method, but these are still under research. In this paper, we suggest an anti-collision algorithm named AAC(Address Allocating and Calling) using pre-distributed random address, which is much faster and more efficient than existing ones. Finally, we evaluate our scheme using mathematical analysis and computer simulation.

Dynamic FSA Algorithm for Fast Tag Identification in RFID Systems (RFID 시스템에서 고속 태그 식별을 위한 동적 FSA 알고리즘)

  • Lim In-Taek;Choi Jin-Oh
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.5
    • /
    • pp.806-811
    • /
    • 2006
  • In RFID system, when multiple tags respond simultaneously, a collision can occur. A method that solves this collision is referred to as anti-collision algorithm. Among the existing anti-collision algorithms, SFSA, though simple, has a disadvantage that when the number of tags is variable, the system performance degrades because of the fixed frame size. This paper proposes a new anti-collision algorithm called DFSA which determines the optimal frame size using the number of collided slots at every frame. According to the simulation results, the tag identification time of the proposed algorithm is faster than that of SFSA.

A Study on Performance Enhancement of RFID Anti-Collision Protocols (RFID 충돌방지 프로토콜의 성능 개선에 관한 연구)

  • Kim, Young-Beom
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.4
    • /
    • pp.281-285
    • /
    • 2011
  • One of the key issues in implementing RFID systems is to design anti-collision protocols for identifying all the tags in the interrogation zone of a RFID reader with the minimum identification delay. In this paper, Furthermore, in designing such protocols, the limited resources in tags and readers in terms of memory and computing capability should be fully taken into consideration. we first investigate two typical RFID anti-collision algorithms, namely RFID Gen2 Q algorithm (accepted as the worldwide standard in industrial domain) and FAFQ algorithm including their drawbacks and propose a new RFID anti-collision algorithm, which can improve the performance of RFID systems in terms of tag identification time considerably. Further, we compared performance of the proposed algorithm with Q algorithm and FAFQ algorithm through computer simulation.

The Development of Deceleration Determination Algorithm for Automatic Train Spacing

  • Baek, Jong-Hyen;Kim, Jong-Ki;Kim, Yong-Ku;Lee, Young-Hoon;Kim, Baek-Hyen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1689-1693
    • /
    • 2003
  • Communication based train control system is applied regularly worldwide. And this system may be used in domestic soon. Communication based train control system does not depend on conventional track circuit. Therefore, position and distance control of train to prevent collision with leading train may become important safety factor. This paper developed collision avoidance algorithm to control trains of several units efficiently for this. In developing a collision avoidance algorithm, it is desirable to avoid the need for additional system. Additional system restricts the development of the algorithm by limiting the effectiveness of the algorithm to only those areas where the additional system can be afforded and has been installed.

  • PDF

Study on the Collision Avoidance Algorithm against Multiple Traffic Ships using Changeable Action Space Searching Method (가변공간 탐색법을 이용한 다중선박의 충돌회피 알고리즘에 관한 연구)

  • Son, N.S.;Furukawa, Y.;Kim, S.Y.;Kijima, K.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.1
    • /
    • pp.15-22
    • /
    • 2009
  • Auto-navigation algorithm have been studied to avoid collision and grounding of a ship due to human error. There have been many research on collision avoidance algorithms but they have been validated little on the real coastal traffic situation. In this study, a Collision Avoidance algorithm is developed by using Fuzzy algorithm and the concept of Changeable Action Space Searching (CAS). In the first step, on a basis of collision risk calculated from fuzzy algorithm in the current time(t=to), alternative Action Space for collision avoidance is planned. In the second step, next alternative Action Space for collision avoidance in the future($t=to+{\Delta}t$) is corrected and re-planned with re-evaluated collision risk. In the third step, the safest and most effective course among Action Space is selected by using optimization method in real time. In this paper, the main features of the developed collision avoidance algorithm (CAS) are introduced. CAS is implemented in the ship-handling simulator of MOERI. The performance of CAS is tested on the situation of open sea with 3 traffic ships, whose position is assumed to be informed from AIS. Own-ship is fully autonomously navigated by autopilot including the collision avoidance algorithm, CAS. Experimental results show that own-ship can successfully avoid the collision against traffic ships and the calculated courses from CAS are reasonable.

  • PDF