• Title/Summary/Keyword: collision Avoidance

Search Result 832, Processing Time 0.029 seconds

Improved Dynamic Window Approach With Path-Following for Unmanned Surface Vehicle (무인수상정을 위한 경로선 추종이 가능한 개선된 Dynamic Window Approach)

  • Kim, Hyogon;Yun, Sung-Jo;Choi, Young-Ho;Lee, Jung-Woo;Ryu, Jae-KWan;Won, Byong-Jae;Suh, Jin-Ho
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.5
    • /
    • pp.295-301
    • /
    • 2017
  • Recently, autonomous navigation technology, obstacle recognition, and obstacle collision avoidance technology are actively being developed for an unmanned surface vehicle (USV). The path to move from the current location to the destination should be planned, in order for an USV to autonomously operate safely to its destination. The dynamic window approach (DWA) is a well-known navigation scheme as a local path planning. The DWA algorithm derives the linear velocity and angular velocity by evaluating the destination direction, velocity, and distance from the obstacle. However, because DWA algorithm does not consider tracking the path, when using only the DWA algorithm, the ship may navigate away from the path line after avoiding obstacles. In this paper, we propose an improved DWA algorithm that can follow path line. And we implemented the simulation and compared the existing DWA algorithm with the improved DWA algorithm proposed in this paper. As a result, it is confirmed that the proposed DWA algorithm follows the path line better.

Optical Monitoring Strategy for Avoiding Collisions of GEO Satellites with Close Approaching IGSO Objects

  • Choi, Jin;Jo, Jung Hyun;Yim, Hong-Suh;Choi, Young-Jun;Park, Maru;Park, Sun-Youp;Bae, Young-Ho;Roh, Dong-Goo;Cho, Sungki;Park, Young-Sik;Jang, Hyun-Jung;Kim, Ji-Hye;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.411-417
    • /
    • 2015
  • Several optical monitoring strategies by a ground-based telescope to protect a Geostationary Earth Orbit (GEO) satellite from collisions with close approaching objects were investigated. Geostationary Transfer Orbit (GTO) objects, Inclined GeoSynchronous Orbit (IGSO) objects, and drifted GEO objects forced by natural perturbations are hazardous to operational GEO satellites regarding issues related to close approaches. The status of these objects was analyzed on the basis of their orbital characteristics in Two-Line Element (TLE) data from the Joint Space Operation Center (JSpOC). We confirmed the conjunction probability with all catalogued objects for the domestic operational GEO satellite, Communication, Ocean and Meteorological Satellite (COMS) using the Conjunction Analysis Tools by Analytical Graphics, Inc (AGI). The longitudinal drift rates of GeoSynchronous Orbit (GSO) objects were calculated, with an analytic method and they were confirmed using the Systems Tool Kit by AGI. The required monitoring area was determined from the expected drift duration and inclination of the simulated target. The optical monitoring strategy for the target area was analyzed through the orbit determination accuracy. For this purpose, the close approach of Russian satellite Raduga 1-7 to Korean COMS in 2011 was selected.

A Dielectric Slab Rotman Lens (유전판 로트맨 렌즈)

  • 김재흥;조춘식
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.11
    • /
    • pp.1108-1115
    • /
    • 2004
  • A new type of a Rotman lens is presented in this paper fur millimeter-wave applications, such as collision avoidance radar. A dielectric slab Rotman lens is proposed to reduce the conductor loss and to create an appropriate farm for favorable implementation at millimeter-wave frequency. The proposed lens consists of a dielectric slab and slot lines whereas the conventional lenses are constructed with parallel conducting plates. The dielectric slab Rotman lens excited in TE$\_$0/ mode shows a high degree of confinement for the fields, low dispersion, and has an appropriate feed structure. A prototype lens has been designed and fabricated with 9 beam ports and 9 array ports together with 9 tapered slot antennas. This lens has been tested in the range from 10 GHz to 15 GHz and the measured beam widths are about 15$^{\circ}$ at 13 GHz. The measurements also show low mutual coupling between beam ports and an efficiency of about 34.6 %. The overall performance is comparable to that of conventional Rotman lenses even though the prototype was tested at lower than desired frequencies in the microwave frequency range due to our limited resources for fabrications and measurements. It is expected that at millimeter-wave frequency the dielectric slab Rotman lens will have lower conductor loss and lower mutual coupling than conventional Rotman lenses.an lenses.

Design of a W-Band Power Amplifier Using 65 nm CMOS Technology (65 nm CMOS 공정을 이용한 W-대역 전력증폭기 설계)

  • Kim, Jun-Seong;Kwon, Oh-yun;Song, Reem;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.330-333
    • /
    • 2016
  • In this paper, we propose 77 GHz power amplifier for long range automotive collision avoidance radar using 65 nm CMOS process. The proposed circuit has a 3-stage single power amplifier which includes common source structure and transformer. The measurement results show 18.7 dB maximum voltage gain at 13 GHz 3 dB bandwidth. The measured maximum output power is 10.2 dBm, input $P_{1dB}$ is -12 dBm, output $P_{1dB}$ is 5.7 dBm, and maximum power add efficiency is 7.2 %. The power amplifier consumes 140.4 mW DC power from 1.2 V supply voltage.

Collision Avoidance for Indoor Mobile Robotics using Stereo Vision Sensor (스테레오 비전 센서를 이용한 실내 모바일 로봇 충돌 회피)

  • Kwon, Ki-Hyeon;Nam, Si-Byung;Lee, Se-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2400-2405
    • /
    • 2013
  • We detect the obstacle for the UGV(unmanned ground vehicle) from the compound image which is generated by stereo vision sensor masking the depth image and color image. Stereo vision sensor can gathers the distance information by stereo camera. The obstacle information from the depth compound image can be send to mobile robot and the robot can localize the indoor area. And, we test the performance of the mobile robot in terms of distance between the obstacle and the robot's position and also test the color, depth and compound image respectively. Moreover, we test the performance in terms of number of frame per second which is processed by operating machine. From the result, compound image shows the improved performance in distance and number of frames.

Multiple Path-planning of Unmanned Autonomous Forklift using Modified Genetic Algorithm and Fuzzy Inference system (수정된 유전자 알고리즘과 퍼지 추론 시스템을 이용한 무인 자율주행 이송장치의 다중경로계획)

  • Kim, Jung-Min;Heo, Jung-Min;Kim, Sung-Shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.8
    • /
    • pp.1483-1490
    • /
    • 2009
  • This parer is presented multiple path-planning of unmanned autonomous forklift using modified genetic algorithm and fuzzy inference system. There are a task-level feedback method and a method that path is dynamically replaned in realtime while the autonomous vehicles are moving by means of an optimal algorithm for existing multiple path-planning. However, such methods cause malfunctions and inefficiency in the sense of time and energy, and path-planning should be dynamically replanned in realtime. To solve these problems, we propose multiple path-planning using modified genetic algorithm and fuzzy inference system and show the performance with autonomous vehicles. For experiment, we designed and built two autonomous mobile vehicles that equipped with the same driving control part used in actual autonomous forklift, and test the proposed multiple path-planning algorithm. Experimental result that actual autonomous mobile vehicle, we verified that fast optimized path-planning and efficient collision avoidance are possible.

Experiment on Track-keeping Performance using Free Running Model Ship (모형 선박을 이용한 선박 침로유지 실험 연구)

  • Im, Nam-Kyun;Tran, Van-Luong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.3
    • /
    • pp.221-226
    • /
    • 2012
  • This research presents an analysis of algorithm for ship track-keeping along a given trajectory. The maneuver of a free running model ship guiding through a simple path are presented. In order to solve the above problem, a desired trajectory is usually determined by GPS points in a pre-fixed place then these points are set in a pre-programmed navigation so that the ship would be automatically tracked. Proportional-Derivative(PD) control which is useful for fast response controllers was used in this program as a course keeping system. A high accuracy GPS receiver was installed on the model ship that could provide positions frequently, the system will compare and give out the remaining distance and heading to the target way-point. The results of ship auto track-keeping experiment will be explained in order to illustrate the adjustment in controlling parameters. These results can be utilized as a preliminary step to carry out the experiment of ship collision avoidance system and automatic berthing in the future.

Propellant Consumption Estimation of Reaction Control System During Flight of KSLV-II (한국형발사체 추력기 자세제어시스템 비행 중 추진제 소모량 추정식)

  • Kang, Shin-jae;Oh, Sang-gwan;Yoon, Won-jae;Min, Byeong-joo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.7
    • /
    • pp.529-536
    • /
    • 2020
  • Reaction Control System of the third stage of the Korean Space Launch Vehicle II conducts roll control and 3 axis control throughout third stage engine start, satellite separation, and collision and contamination avoidance maneuver. Reaction control system consumes its propellant in each thruster operation. Hence, loading of proper amount of the propellant is important for mission success. It is needed to have a rough estimation method of propellant consumption during the flight. In this paper, we developed a energy equation using pressure and temperature data which are acquired in the on-board reaction control system. We constructed a test system which is similar with the on-board reaction control system to verify the energy equation. Test results using deionized water were compared with estimated propellant consumption. We also conducted an error analysis of the energy equation. We also presented the propellant consumption result of a system level operation test.

A Study of Path-Finding Method of Small Unmanned Aerial Vehicles for Collision Avoidance (소형 무인비행체에서의 충돌회피를 위한 비행경로 생성에 관한 연구)

  • Shin, Saebyuk;Kim, Jinbae;Kim, Shin-Dug;Kim, Cheong Ghil
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.1
    • /
    • pp.76-80
    • /
    • 2017
  • With the fast growing popularity of small UAVs (Unmanned Aerial Vehicles), recent UAV systems have been designed and utilized for the various field with their own specific purposes. UAVs are opening up many new opportunities in the fields of electronics, sensors, camera, and software for pilots. Increase in awareness and mission capabilities of UAVs are driving innovations and new applications driven with the help of low cost and its capability in undertaking high threat task. In particular, small unmanned aerial vehicles should fly in environments with high probability of unexpected sudden change or obstacle appearance in low altitude situations. In this paper, current researches regarding techniques of autonomous flight of smal UAV systems are introduced and we propose a draft idea for planning paths for small unmanned aerial vehicles in adversarial environments to arrive at the given target safely with low cost sensors.

Efficient Implementation of FMCW Radar Signal Processing Parts Using Low Cost DSP (저가형 DSP를 사용하는 FMCW 레이더 신호처리부의 효율적 구현 방안)

  • Oh, Woojin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.707-714
    • /
    • 2016
  • Active driving safety systems for vehicle, such as the front collision avoidance, lane departure warning, and lane change assistance, have been popular to be adopted to the compact car. For improving performance and competitive cost, FMCW radar has been researched to adopt a phased array or a multi-beam antenna, and to integrate the front and the side radar. In this paper we propose several efficient methods to implement the signal processing module of FMCW radar system using low cost DSP. The pulse width modulation (PWM) based analog conversion, the approximation of time-eating functions, and the adoption of vector-based computation, etc, are proposed and implemented. The implemented signal processing board shows the real-time performance of 1.4ms pulse repetition interval (PRI) with 1024pt-FFT. In real road we verify the radar performance under real-time constraints of 10Hz update time.