• Title/Summary/Keyword: collision Avoidance

Search Result 837, Processing Time 0.021 seconds

Trajectory Planning of Satellite Formation Flying using Nonlinear Programming and Collocation

  • Lim, Hyung-Chu;Bang, Hyo-Choong
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.361-374
    • /
    • 2008
  • Recently, satellite formation flying has been a topic of significant research interest in aerospace society because it provides potential benefits compared to a large spacecraft. Some techniques have been proposed to design optimal formation trajectories minimizing fuel consumption in the process of formation configuration or reconfiguration. In this study, a method is introduced to build fuel-optimal trajectories minimizing a cost function that combines the total fuel consumption of all satellites and assignment of fuel consumption rate for each satellite. This approach is based on collocation and nonlinear programming to solve constraints for collision avoidance and the final configuration. New constraints of nonlinear equality or inequality are derived for final configuration, and nonlinear inequality constraints are established for collision avoidance. The final configuration constraints are that three or more satellites should form a projected circular orbit and make an equilateral polygon in the horizontal plane. Example scenarios, including these constraints and the cost function, are simulated by the method to generate optimal trajectories for the formation configuration and reconfiguration of multiple satellites.

Multiple Target Tracking and Forward Velocity Control for Collision Avoidance of Autonomous Mobile Robot (실외 자율주행 로봇을 위한 다수의 동적 장애물 탐지 및 선속도 기반 장애물 회피기법 개발)

  • Kim, Sun-Do;Roh, Chi-Won;Kang, Yeon-Sik;Kang, Sung-Chul;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.7
    • /
    • pp.635-641
    • /
    • 2008
  • In this paper, we used a laser range finder (LRF) to detect both the static and dynamic obstacles for the safe navigation of a mobile robot. LRF sensor measurements containing the information of obstacle's geometry are first processed to extract the characteristic points of the obstacle in the sensor field of view. Then the dynamic states of the characteristic points are approximated using kinematic model, which are tracked by associating the measurements with Probability Data Association Filter. Finally, the collision avoidance algorithm is developed by using fuzzy decision making algorithm depending on the states of the obstacles tracked by the proposed obstacle tracking algorithm. The performance of the proposed algorithm is evaluated through experiments with the experimental mobile robot.

A Fuzzy Logic for Autonomous Navigation of Marine Vehicles Satisfying COLREG Guidelines

  • Lee, Sang-Min;Kwon, Kyung-Yub;Joongseon Joh
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.2
    • /
    • pp.171-181
    • /
    • 2004
  • An autonomous navigation algorithm for marine vehicles is proposed in this paper using fuzzy logic under COLREG guidelines. The VFF (Virtual Force Field) method, which is widely used in the field of mobile robotics, is modified for application to the autonomous navigation of marine vehicles. This Modified Virtual Force Field (MVFF) method can be used in either track-keeping or collision avoidance modes. Moreover, the operator can select a track-keeping pattern mode in the proposed algorithm. The collision avoidance algorithm has the ability to handle static and/or moving obstacles. The fuzzy expert rules are designed deliberately under COLREG guidelines. An extensive simulation study is used to verify the proposed method.

Circle List-Based Obstacle Avoidance for Omni-directional Mobile Robots in Dynamic Environments (동적 환경에서의 전방위 이동 로봇을 위한 서클 리스트(Circle List) 기반의 장애물 회피)

  • Cheon, Hong-Seok;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.12
    • /
    • pp.1227-1233
    • /
    • 2011
  • An effective method of obstacle avoidance for omni-directional mobile robots is proposed to avoid moving obstacles in dynamic environments. Our method uses the concept of circle lists which represent the trajectories of robot and obstacles. This method predicts not only collision position but also collision time, and hence it enables the robot avoiding the most urgent collision first. In order to avoid obstacles, our method uses artificial repulsive force and contraction force. Simulation results show that the robot could avoid obstacles effectively.

SOFTWARE ARCHITECTURE FOR ADAPTIVE COLLISION AVOIDANCE SYSTEMS

  • Blum, Jeremy;Eskandarian, Azim
    • International Journal of Automotive Technology
    • /
    • v.3 no.2
    • /
    • pp.79-88
    • /
    • 2002
  • Emergent Collision Avoidance Systems (CAS's) are beginning to assist drivers by performing specific tasks and extending the limits of driver's perception. As CAS's evolve from simple systems handling discrete tasks to complex systems managing interrelated driving tasks, the risk of failure from hidden causes greatly increases. The successful implementation of such a complex system depends upon a robust software architecture. Host of the difficulty in implementing system arises from interconnections between the components. The CAS architecture presented in this paper focuses on these interconnections to mitigate this problem. Moreover, by constructing the GAS architecture through the composition of existing architectural styles, the resulting system will exhibit predictable qualities. Some of the qualities represent limitations that translate into constraints on the system. Others are beneficial aspects that satisfy stakeholder requirements .

Collision Avoidance Method Using Minimum Distance Functions for Multi-Robot System (최소거리함수를 이용한 다중 로보트 시스템에서의 충돌회피 방법)

  • Chang, C.;Chung, M.J.
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.425-429
    • /
    • 1987
  • This paper describes a collision avoidance method for planning safe trajectories for multi-robot system in common work space. Usually objects have been approximated to convex polyhedra in most previous researches, but in case using such the approximation method it is difficult to represent objects analytically in terms of functions and also to describe tile relationship between the objects. In this paper, in order to solve such problems a modeling method which approximates objects to cylinder ended by hemispheres and or sphere is used and the maximum distance functions is defined which call be calculated simply. Using an objective function with inequality constraints which are related to minimum distance functions, work range and maximum allowable angular velocities of the robots, tile collision avoidance for two robots is formulated to a constrained function optimization problem. With a view to solve tile problem a penalty function having simple form is defined and used. A simple numerical example involving two PUMA-type robots is described.

  • PDF

Conceptual Model for Fuzzy-CBR Support System for Collision Avoidance at Sea Using Ontology

  • Park, Gyei-Kark;Kim, Woong-Gyu;Benedictos, John Leslie RM
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.3
    • /
    • pp.390-396
    • /
    • 2007
  • Fuzzy-CBR Collision Avoidance Support System is a system that finds a solution from past knowledge retrieved from the database and adapted to a new situation. Its algorithm has resulted to an adapting a solution for a new situation. However, ontology is needed in identifying concepts, relations and instances that are involved in a situation in order to improve and facilitate the efficient retrieval of similar cases from the CBR database. This paper proposes the way to apply ontology for identifying the concepts involved in a new environment and use them as inputs, for a ship collision avoidance support system., Similarity will be obtained through document articulation and using abstraction levels. A conceptual model of a maneuvering situation will be built using these ontologies.

A Method for Constructing 3-Dimensional C-obstacles Using Free Arc (프리아크를 이용한3차원 형상 공간 장애물 구성 방법)

  • 이석원;임충혁
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.11
    • /
    • pp.970-975
    • /
    • 2002
  • We suggests an effective method to construct time-varying C-obstacles in the 3-dimensional configuration space (C-space) using free arc. The concept of free arc was defined mathematically and the procedure to find free arc in the case off-dimensional C-space was derived in [1]. We showed that time-varying C-obstacles can be constructed efficiently using this concept, and presented simulation results for two SCARA robot manipulators to verify the efficacy of the proposed approach. In this paper, extensions of this approach to the 3-dimensional C-space is introduced since nearly all industrial manipulators are reasonably treated ill the too or three dimensional C-space f3r collision avoidance problem The free arc concept is summarized briefly and the method to find lice arc in the 3-dimensional f-space is explained. To show that this approach enables us to solve a practical collision avoidance problem simulation results f3r two PUMA robot manipulators are presented.

Development of Touch Probe Collision Avoidance Algorithm for OMM Using Offset Surface and Dynamic Error Compensation (OMM 에서 Offset Surface 를 이용한 접촉식 Probe 의 충돌회피 알고리즘 개발 및 동적 에러 보정)

  • 정석현;김동우;조명우;서태일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.323-326
    • /
    • 2004
  • In this study, the inspection path which is considered to free collision is generated by offset surface. When the inspection is executed, the consideration of machine dynamic error increases a precision. Dynamic error is measured on CNC machine bed changing of weight work price. Offset surface is safety space about collision. Because the danger of probe-collision is excluded in Offset surface, it is possible to rapid feed of probe and reduced inspection time. The Program which is possible to simulate using CAIP and is confirmed through actual experiment.

  • PDF

A Study on the Legal Interpretation of "not to impede the passage" in the Rules of the Nautical Road (해상교통법상 통항항해배제에 관한 해석론적 고찰)

  • 지상원
    • Journal of the Korean Institute of Navigation
    • /
    • v.19 no.3
    • /
    • pp.67-81
    • /
    • 1995
  • There is a vessel which shall not impede the passage of any other vessel in the COLREGS 1972. But the issue was raised that the words of "not to impede" were vague. Therefore, IMO adopted new paragraph (f) to be added to Rule 8 that a vessel which is required not to impede the passage of another vessel is not relieved of this obligation if approaching the vessel so as to involve risk of collision. It means that the ship which is obliged not to impede should contributes to avoid collision and to the safe passage of the other vessel. Also it results that the application of Collision Rules should be changed. But until now, it seems that the mariners are not familiar with this subject. This paper, therefore, aims to define the meaning of "not to impede" and clarify it's legal concept so as to adequate application of the Collision Rules for the collision avoidance at sea.on avoidance at sea.

  • PDF