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ABSTRACT-Emergent Collision Avoidance Systems (CAS's) are beginning to assist drivers by performing specific
tasks and extending the limits of driver's perception. As CAS's evolve from simple systems handling discrete tasks to
complex systems managing interrelated driving tasks, the risk of failure from hidden causes greatly increases. The
successful implementation of such a complex system depends upon a robust software architecture. Most of the difficulty
in implementing system arises from interconnections between the components. The CAS architecture presented in this
paper focuses on these interconnections to mitigate this problem. Moreover, by constructing the CAS architecture through
the composition of existing architectural styles, the resulting system will exhibit predictable qualities. Some of the
qualities represent limitations that translate into constraints on the system. Others are beneficial aspects that satisfy

stakeholder requirements.
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1. INTRODUCTION

Automobile manufacturers are beginning to deploy the
first generation of CAS's. The systems handle relatively
simple and independent scenarios. However, there is
significant concern that even these simple CAS's may
actually make the driving environment more dangerous.
In order to mitigate this concern, future CAS's must
include an adaptive capability that allows the CAS to
learn the driving style and limitations of a particular
driver. Moreover, as more driving situations are managed
by CAS's, the subtle interactions between CAS compo-
nents can lead to catastrophic failure of the system.

This paper presents a robust software architecture for
future CAS's that manages the complexity of the result-
ing system by instantiating the CAS architecture from a
proven architectural styles. These architectural styles
result in predictable aspects of the system. The qualities
include benefits that are essential for meeting the system
requirements, and drawbacks that present constraints on
the components in the architecture. By addressing these
drawbacks in the design phase, the resulting system is
more resilient to catastrophic failure.

The remainder of the introduction contains an over-
view of CAS's, followed by a section detailing the
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benefits of a Software Architecture. The architecture is
described from various viewpoints. Section 2 presents a
ballpark view of the architecture. The owner's view of the
architecture is presented in Section 3. Section 4 contains
a more detailed description of the components, intercon-
nections, and constraints that comprise the designer's
view of the architecture. Section 5 presents the conclu-
sion.

1.1. CAS Overview and Requirements

CAS's are still in an incipient state, addressing relatively
simple and isolated tasks. The areas of control can be
divided into lateral control and longitudinal control. The
output of the system includes control signals, driver
warnings, and driver perception enhancement.

In order to limit the liability associated with autono-
mous vehicles, CAS's in the near future will keep the
driver “in the loop” and seek to enhance the ability of the
driver to avoid dangerous situations. In order to limit the
investment needed for centralized CAS system, the locus
of control of the CAS will be within an individual
vehicle. Another approach to CAS a centralized planning
layer that coordinates the actions of multiple vehicles.
(Zhang et al., 1994; Varaiya, 1993) However, manu-
facturers of control systems that automate driving tasks
are even more likely to be defendants in a lawsuit.
Therefore, completely automated highways with centra-
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lized control are unlikely to be realized any time soon.
Equally unlikely is an autonomous vehicle that relieves
the driver of any responsibility.

Lateral contro] systems include curve preview systems,
lane keeping systems, and lane-changing aids. Curve
preview systems can inform drivers of upcoming road
layout, offer a suggested safe speced, and perform auto-
matic braking when a curve is being approached too fast.
(BMW, 1998; Shields and Roser, 2000) Lane keeping
systems aim to keep the vehicle from straying from its
current lane. Simple lane changing aids that detect objects
in a driver's blind spot are also becoming available.
(McLoughlin et al., 1993).

Longitudinal control includes Adaptive Cruise Control
(ACC), Stop and Go Cruise Control, and Intersection
Control. ACC attempts to maintain a constant following
distance and is now found in many commercially
available vehicles. (Shields and Roser, 2000) The next
generation of ACC, Stop and Go Cruise Control, must
manage stop and go traffic which is characterized by
sudden lane changes, frequent changes in target dynamics,
and multiple targets. (Venhovens et al., 2000) Intersection
Control is not yet available. It must handle the four most
common collision scenarios in intersections — left tumn
across a vehicle's path, inadequate gap on a perpendicular
path, violation of a Traffic Control Device (TCD), and
premature intersection entry. (Jacoy and Knight, 1998)
To accomplish this task, the controller will need the
ability to sense the presence and type of TCD's, the
dimensions of the intersection, and the dynamics and
intentions of target vehicles.

The output of a CAS is presented via traditional Head-
Down Displays, newer Head-Up Displays (HUD's),
auditory and haptic warnings, and in a number of other
innovative fashions. Haptic warnings are sensed through
touch and bodily movement. They tend to produce faster
responses than the other alarms. The driver must learn to
associate the haptic warning with the nature of the hazard.
For example, the force needed to press the accelerator
could be increased to signal the driver to decelerate.

Other CAS output is quite varied. Night vision and
intelligent headlights improve upon the limits of human
vision, (GM, 2001; Kamiya, 1996) Another strategy is to
measures the limits of human vision in low-visibility situ-
ations like heavy fog, and notify the driver of a maximum
safe speed based on stopping distance. (BMW, 1998)
Many vehicles utilize GPS/GIS systems for navigation
either in production models or research vehicles. (Mercedes-
Benz, 2001; Mimuro, 1996; GM, 2001) Drowsy driver
detection systems have included a wide range of response
modalities including issuing warnings, changing the
cabin temperature, vibrating the driver's seat, and even
pumping refreshing fragrances into the cabin. (Freund et
al., 1995)

As remarkable as these systems are, there is significant
concern that the CAS may actually make the driving
environment more dangerous. The user’s requirements
arise from the mitigation of this danger. Specifically, the
CAS must be able to adapt to driver behavior. Non-
adaptive timings and warnings have the following con-
sequences:
¢ Driver vigilance may be reduced, if the CAS inspires

either an unrealistically high level of driver trust in the

system or misinterpretation of the CAS vehicle as an

autonomous vehicle. (Moray, 1990)

e A driver may have to pay excessive attention to the
CAS to prevent unwanted warnings or interventions.
(Goodrich and Boer, 2000)

e Drivers may misunderstand the meaning of the alarms.
e The alarms issued by the CAS may cause driver
embarrassment or irritability. (Groeger et al., 1993)
¢ The CAS may provide information and recommen-
dations that are not appropriate for a given driver's

limitations. (Michon and Smiley, 1993)

e The CAS may overwhelm the cognitive capability of
drivers, particularly older drivers. (Hendersen and Suen,
1999)

Furthermore, there is concern that other drivers may
attempt to take advantage of the limitations of a CAS-
equipped vehicle and trick it into a crash situation. This
concern can be mitigated through a “black box” which
records information about the vehicle and its surround-
ings for the purposes of reconstructing an accident.
(Menig and Coverdill, 1999)

1.2. Need for a Software Architecture

The benefits of a software architecture are particularly
applicable for CAS's. A systems architecture should not
develop in an ad hoc way — emerging as components of
the system are developed. Selecting the correct archi-
tecture is often crucial for successful system design, and
moreover, selecting the wrong architecture may have
disastrous results. (Garlan and Shaw, 1993)

This is particularly crucial in the development of
complex safety-critical applications. Specifically, creating
a software architecture for CAS, affords benefits in the
ability to manage dangers that arise from inherent in
system's complexity, to predict aspects of system perfor-
mance, and to enhance possibilities for reuse.

Highly complex systems are prone to catastrophic
failure. (Carlson and Doyle, 2000) The scale of the
potential failure is a result of interactions between
components. Current CAS systems operate essentially in
isolation with limited opportunity for conflict. This
situation will change rapidly as more functions are
automated, and unexpected conflicts arise between
modules. Growing a CAS through ad hoc composition of
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individual components will miss these interactions. The
key to managing this complexity is develop the CAS
based on a well-defined software architecture.

A seminal analysis of driving tasks identified 43 main
driving tasks, which were further broken down into 1700
sub-tasks. (McKnight and Adams, 1970) As a CAS
handles more of the tasks, conflicts will arise between
tasks. For example, lane-keeping and collision-avoidance
tasks may issue conflicting control signals. Consider a
target car traveling the same direction in the next lane, If
this car starts to veer into the subject car's lane, the
collision avoidance function may want to steer the car
away from the target. However, the lane-keeping function
may resist this action. While this conflict is obvious,
many more interactions will arise in subtle and unexpect-
ed ways. For example, researchers have determined that
ACC will make it more dangerous to pass vehicles on a
two-lane road.

In addition to managing complexity, software architec-
tures also improve the predictability of the final system's
properties. By using existing software architectures, the
system designer can select architectural patterns whose
advantages, as demonstrated in previous instantiations,
are desirable for the current system. At the same time, the
designer can address demonstrated weaknesses during
the design process.

The third benefit realized through the implementation
of software architectures is the increased capability for
reuse. Reuse of hardware and software components
provides a number of benefits. One benefit is that as
components are reused, they are subject to more testing,
and therefore more bugs can be identified and rectified.
Reuse also reduces system development cost by minimiz-
ing the total amount of software that must be developed.
Furthermore, reuse promotes the ability to consolidate
system hardware. For example, if the CAS components
reuse a module that reasons about target vehicle dyna-
mics, they may also all be able to rely on a single set of
sensors that detects target vehicles.

Reuse can be stressed at multiple points during the
system development process. However, the potential
scope of the reuse is the largest when specifying the
system architecture, because at this point, the system has
the fewest constraints. (Perry and Wolf, 1992) Often it is
too late to consider reuse at the component level because
components already are too constrained.

2. BALLPARK VIEW OF ARCHITECTURE

One architecture description is insufficient for the specifi-
cation of a software system. Rather than one view of the
architecture, there is a set of software architectures, each
having a differing perspective. (Zachman, 1999) These
perspectives include a scope description providing a
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Figure 1. Entity hierarchy.

ballpark view, an owner's view, and a designer's view.

The ballpark view includes a list entities and process-
es. This viewpoint provides a birds-eye view of the entire
system. Figure 1 shows the entity hierarchy for the CAS.
The higher-level entities are composed of the lower level
entities. At the top level are categories common typical of
embedded systems. As in other embedded systems, the
essential interaction is that of a controlling system
regulating a controlled system.

The controlling system is comprised of sensors, control
logic, and actuators including servo-controllers, and
warning and other driver information systems. It uses
sensors to determine the current state of the controlled
system. The controlling system uses this state to issue
appropriate control signals and warnings.

There are three major entities in the controlled system.
(Goodrich and Boer, 2000) The driver includes the
intentions, conditions, and limitations. Driver intentions
include whether the driver is stopping or changing lanes.
Knowledge of driver intentions is critical to understand-
ing when a CAS action is warranted, because a misinter-
pretation of driver intentions may cause false alarms.

Driver conditions include drowsiness or level of driver
attention. Driver limitations include driver reaction times,
familiarity with given driving tasks, and visual acuity.
Knowledge of driver conditions and limitations are
essential to meet the adaptability requirements of a CAS.
The vehicle entity includes information about the vehicle's
dynamics, position, and limitations. The data also includes
information about current state of controls, such as the
steering angle, throttle angle, and brake state. The
environment includes more than the road geometry and
the weather conditions. The environment actor also
includes the position, velocity, and intentions of target
vehicles.

In addition to an entity list, the scope description
includes a list of processes and a description of the
locations of the processing. As mentioned previously, the
primary processes for the CAS include taking appropriate
control actions, issuing appropriate control signals, and
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TCD's, Weather

Figure 2. Entity relationship diagram.

extending the limits of driver perception. In addition, as
mentioned in the introduction, this paper is considering
CAS systems that keep the driver in the loop.

3. OWNER'S VIEW OF ARCHITECTURE

The owner's view begins to provide more information
about the interaction of components in the system. It can
be depicted in three diagrams—an entity relationship
diagram, a functional flow as captured by a system state
diagram, and a network diagram.

The entity-relationship diagram characterizes the inter-
actions between the entities described in the previous
section. One additional relationship is depicted here. That
is that the CAS of the subject vehicle communicates
information about driver intentions and vehicle status to
the CAS of nearby vehicles.

The state diagram in Figure 3 captures the functional
flow of the system. The CAS events come in a variety of
forms. Examples include the detection of an intersection
for intersection control; forward motion for lane-keeping;
or the onset of traffic congestion for an intelligent routing
system.

When an event is detected, the CAS determines what it
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Figure 3. CAS state diagram.
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Figure 4. CAS network.

believes to be an appropriate response — a warning, driver
information, or control response. Because of the like-
lihood of an inappropriate response, the system may
evaluate the response by monitoring driver reaction. For
example, if the driver ignored a warning without adverse
consequences, or the driver overrode a CAS control signal,
the system has evidence that its response was inappro-
priate. A suitable alteration of its adaptive response
should then be made to attempt to avoid repetition of this
€ITOr.

The CAS Network Diagram depicts the data links that
the CAS may rely on to glean information about the
environment. Nearby cars communicate driver intentions
and vehicle dynamics. For example, the European PRO-
METHEUS project used millimeter wave radio for inter-
vehicle communication for vehicle platoons and other
collision avoidance functions. (Sourour and Nakagawa,
1999) GIS/GPS plays a role in CAS in intelligent routing
systems. It could also be used to gather information about
upcoming road geometry, intersections, and traffic control
devices (TCD's). Roadway to vehicle communication is
possible at some point in the future, providing infor-
mation about TCD's or road geometry. (Hayami et al.
1999; Choi, 2000) The wireless internet is also playing a
role in CAS. (GM, 2001; Eaton, 1998)
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4. DESIGNER'S VIEW OF ARCHITECTURE

The designer's view provides detailed information about
the components that comprise the CAS. Complex archi-
tectures are often the instantiation of multiple architectural
styles, combined through either through a hierarchy or
through a mixture of architectural connectors. (Garlan
and Shaw, 1993) This view of the CAS is described by a
hierarchical heterogeneous architecture in a top-down
approach through partition and concretization. (Abd-
Allah, 1995)

4.1. High-Level View: Pipe and Filter Architecture

At the highest level, the CAS is a pipe and filter
architecture. Pipe and filter architectures offer four major
benefits that are relevant to the CAS, and two drawbacks
that must be addressed during the design phase.

The first advantage is that the architecture offers easy
maintenance and enhancement. (Garlan and Shaw, 1993)
Maintaining or upgrading the system is simply a matter
of upgrading an individual filter. As long as the input and
output remain the same, new components can be freely
switched with old ones. The second advantage is that the
system's functionality can be understood as a compo-
sition of the functionality of the individual filters. (Garlan
and Shaw, 1993) A third advantage of this architecture is
its support for concurrency. As long as there is no
bottleneck to the processing, each filter can run on a
separate processor and in parallel with other filters.

The last advantage is that the systems support reuse.
(Garlan and Shaw, 1993) The CAS supports reuse in a
different fashion than pipe and filter systems that exist
totally in software. Much of this reuse is enabled through
using a canonical format for the data, which allows
enormous freedom in mixing and matching filters.
However, the data in a CAS is so different from filter to
filter, that presenting a canonical data format is not
desirable. Rather, the CAS generates reuse through the
elimination of redundant hardware sensors and filters and
with the possibility of transmission of data on a common
system bus as opposed to wiring dedicated to individual
CAS tasks.

The architecture, however, does have two significant
disadvantages that must be addressed during system

design. The first disadvantage concerns system perfor-
mance. If a filter cannot begin processing before the
previous filter has finished with the data, this architecture
will degenerate into batch processing. (Hoffman et al.,
1996) Batch processing will have difficulty meeting the
hard real-time processing requirements of the CAS. The
second disadvantage of the pipe and filter architecture
arises due to the use of multiple sensors. In this
architecture, it is difficult to maintain correspondences
between two separate but related data streams. (Garlan
and Shaw, 1993)

The high level depiction of the architecture is shown in
Figure 5. Sensors detect the current state of the environ-
ment. Filters refine the raw data from the sensors. A
Sensor Synthesizer module reconciles conflicting infor-
mation from different filters, and relays the state of the
controlied environment to an event handler. The event
handler dispatches notification of an event to appropriate
CAS functions, which then issue information, warnings
or control responses.

4.1.1. Sensors

In order to provide adaptability to an individual driver,
CAS will need to have access to the same information
that a driver uses to make driving decisions. Since
humans perceive the driving environment primary with
sight, this additional data will be readily available from
vision sensors, Due limitations in other sensor techno-
logies, vision sensors must be included, so no additional
sensors will be needed to provide adaptability. Further-
more, the sensors offer the first opportunity for reuse in
the CAS architecture.

Sensor technologies include radar and laser and yaw
rate gyroscopes. Adaptive Cruise Control is limited to
high-speed, well-ordered roads because of the limitations
of laser and radar sensors. These sensors have difficulty
distinguishing between stopped vehicles and fixed objects,
including overpasses, overhead signs, and roadside clutter.
(Barber and Clarke, 1998) Consequently, all motionless
objects are ignored, and so ACC is limited to well-
ordered roads with minimum speeds on the order of 40
km/hr. (Venhovens et al., 2000)

Roadway geometry can also confuse CASs that rely on
radars and lasers. On curves, vehicles in nearby lanes

[ Sensor |—p| Filter |
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Figure 5. Pipe and filter architecture.
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may be falsely identified as being in the same lane.
(Barber and Clarke, 1998) Yaw rate gyroscopes, which
can detect the curvature in a vehicles trajectory can
mitigate this problem somewhat, but only if the vehicles
trajectory matches the upcoming road curvature.
(Behringer and Maurer, 1996) Vision sensors, though, do
not suffer from the same drawbacks as laser and radar,
and therefore will not only enable Stop And Go Cruise
Control, but also provide the CAS with the means to
extract of additional data that humans use for driving
decisions.

Because the sensors offer data that are used by
multiple functions of the CAS, they offer the first major
area for reuse in the system. Rather than having a
separate set of sensors for each CAS function, all of the
functions will rely on the same set of sensors. There is
actually quite a bit of redundancy that will be eliminated
through the use of shared sensors. Some experimental
vehicles use multiple cameras to provide distance infor-
mation as well as 360° view of the exterior of the vehicle.
The Mitsubishi Advanced Safety Vehicle, for example,
uses two lane detecting cameras and three sterco
cameras, for a total of eight cameras. (Mimuro et al.,
1996)

4.1.2. Sensor processing

The next set of filters in the top-level view of the
architecture performs signal processing on the sensor
input. These filters must address the two disadvantages of
the architecture — the tendency for it to degenerate into
batch processing and the need to maintain the corre-
spondence between related data streams.

Object recognition filters, particularly for vision sensors,
have a high likelihood to degrade the architecture into
batch processing. A conventional algorithm may take too
long to analyze a complex scene, and for simple scenes, it
may waste computing resources. One solution to this
problem is an anytime algorithm. (Sobottka and Burke,
1999) These algorithms have the property that a solution
is available anytime the algorithm is terminated and the
solution improves with additional computing time. The
algorithm starts with a restricted heuristic to obtain an
initial and possibly sub-optimal solution. As time remains,
more computationally intensive methods iteratively improve
the solution.

Additional processing must be done to synthesize the
output from the various filters. Because of filter limita-
tions, different filters may present conflicting information.
The Sensor Synthesis filter must rectify these conflicts.
Furthermore it must mitigate the other drawback inherent
in this architecture. It must maintain correspondence
between outputs of various filters. Therefore, this draw-
back of the pipe and filter architecture creates a constraint
on the sensor synthesis module.

4.1.3. Event handler

The details of the event handler filter are left abstract at
this level. Only its interfaces are defined. At this level, the
Event Handler filter includes both the event announcers
and the event handlers.

Event-handler architectures come in a wide variety of
forms. The common invariant of these architectures is
that the announcer of events does not know which
components will be affected by an event. (Garlan and
Shaw, 1993) Consequently, the announcers cannot make
assumptions about order of processing or even about
what processing will occur as a result of their events, The
order of processing is particularly important with a CAS,
as certain functions are more safety critical than others.

Like the pipe and filter architecture, an event-driven
architecture offers advantages that benefit the CAS and
drawbacks that must be addressed through constraints as
the specific components of the architecture are described.
(Garlan and Shaw, 1993) The advantages include easy
expansion and easy implementation of concurrency.
Disadvantages include difficulty in debugging, difficulty
in reasoning about correctness, and global resource
management issues.

Adding new tasks to an event-driven architecture is
easy because by default components do nothing in
response to an event. Concurrency is also easy to achieve
in this architectural style. The event announcers and
event handlers can run simultaneously on their own
processors. The ability to easily move complex CAS
functions to their own processor provides the ability of
the system to scale to handle more scenarios.

However, one of the major disadvantages of event-
handler architecture is that it is difficult to debug and
guarantee the correctness of the program. One ramifi-
cation of this style is that by default announcers relin-
quish control over the performance of the computation.
As such, announcers cannot guarantee order of process-
ing or even if an announced event will be handled by a
component. Moreover, the uncertain order of events com-
bined with persistent state information makes reasoning
about correctness nearly impossible.

The other pertinent disadvantage of event handlers is
that resource management can become an issue. If there
is a large amount of state data, it may be impossible to
transmit state information with an event, In such a case, a
globally accessible memory is needed for components to
access state information. The global memory then
presents resource management issues. Furthermore, since
there is no explicit invocation inherent in the architecture,
processor resource management can become a problem
as multiple event handlers vie for this resource.

The drawbacks of event handlers will be addressed in
the next section, as we concretize and constrain the
implementation. These problems would likely be present
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in any CAS. However, without recognizing the use of this
established architectural pattern, it would be difficult to
identify and address these types of characteristic draw-
backs in the design process.

4.2. Concretization of Event Handler — Blackboard

In order to address the drawbacks raised in the previous
section, the event handler is instantiated as a blackboard
system. The blackboard system is typically made up of
three components: a repository, knowledge sources, and a
scheduler. (Craig, 1995)

The repository stores current state information and a
proposed solution to a problem. Each knowledge source
encapsulates an algorithm that uses the state information
to update the proposed solution. In one type of black-
board, based on the current state, a controller activates
appropriate knowledge sources. Blackboards are particu-
larly appropriate for situations like collision avoidance
where there is no direct solution available, and multiple
CAS functions must be utilized to obtain a valid solution.

The blackboard metaphor embodies a high degree of
reuse. The centralized storage of state information allows
for multiple CAS functions to share significant hardware
resources. Furthermore, the reasoning and logic in CAS
functions can also be reused. For example, many CAS
functions are enhanced through with kinematics model
for the subject vehicle and surrounding vehicles. This
kinematics model can be encapsulated in one knowledge
source and then shared by multiple CAS functions.

Another advantage is the partitioning of the system
functions into knowledge sources with well-defined
interfaces facilitates development by a team of pro-
grammers. Each programmer can focus on an individual
knowledge source without worrying about duplication of
effort.

Blackboards do have a disadvantage concerning the
quality of the input data. Error in the input can lead the
blackboard to produce erroneous results. This drawback
creates an additional constraint that is handled by the
Sensor Synthesis filter. Due to the limitations in sensor
technologies, different sensors may produce conflicting
data. The Sensor Synthesis module will rectify these
problems with knowledge of sensor limitations.

Controlled Environment State

Adjustable Parameters

Percieved CAS Events

Solution

Proposed CAS Response

Figure 6. Segmentation of the blackboard repository.

As shown in Figure 6, the repository used by the CAS
is segmented. Part of the blackboard is used to reflect the
current state of the controlled system, including state of
environment, vehicle, and driver. The blackboard also
contains a proposed solution in two areas. The first area
contains the transformation made by the knowledge
sources from the state information to the identification of
CAS situations, such as “straying from lane at rate of x ft/
§” or “ignoring an upcoming stop sign.” The last segment
of the repository contains the adaptability data that
models the behavior of a particular driver. Since multiple
drivers may use a given CAS, some means must be
provided to store multiple driver records and identify the
current driver. Details of the format of this adaptability
data and the constraints of the knowledge sources are
provided in section 4.3.

The scheduler must guarantee that a CAS knowledge
source is activated when appropriate. To accomplish this,
the scheduler needs to know the controlled environment
states associated with a given knowledge source. For
example, lane keeping should not be activated when the
vehicle is stationary or when vehicle is changing lanes.
Adaptive cruise control should not be used for speeds less
than 40 km/hr. The scheduler also guarantees the worst-
case time to activation of a CAS function. The scheduler
can invoke the most time-critical knowledge sources
first. This could be accomplished assigning priorities to
the knowledge sources.

The blackboard scheduler addresses the disadvantages
of an event-handling architecture. First, the scheduler
provides for explicit invocation of knowledge sources.
The central repository and the scheduler also mitigate the
event-handler problem with global resource management.
The repository provides a pattern for global memory
management. The scheduler is responsible for processing
resource management by controlling when knowledge
sources are scheduled.

The scheduler embodies the major difference between
this blackboards and an autonomous agent architecture,
which have also been suggested as possible choice for
some CAS features. (Burmeister ef al., 1997) Asyn-
chronous Teams of Autonomous Agents, A-Teams, are
one type of agent architecture. (Talukdar, 1998)

A-Teams have many similarities to blackboard. Both
produce a distributed search of a solution space. Both
contain a common solution or solutions that are modified
by agents or knowledge sources. The essential difference
is that in an A-Team, agents retain autonomy by main-
taining control over when they run. In this blackboard,
the scheduler controls when knowledge sources run.

A-Teams have been used collision avoidance in
robotics. (Kao et al., 1996) However, A-Teams do not
mitigate the problem inherent in this software archi-
tecture. The scheduler's inherent ability to manage
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processor resources and guarantee the order of processing
is critical for the CAS. These qualities are not inherent to
autonomous agent architectures.

4.3. Knowledge Sources

The specification of the components that comprise the
knowledge sources provides additional constraints on the
blackboard. These knowledge sources include Kinematics,
Black Box, Adaptive, Learning, Baseline, Synthesis and
Notification components. The functions of some of these
knowledge sources have been specified earlier. The
Kinematics component provides a model of the dynamics
of host vehicle and target vehicles. The “black box”
component can discourage other drivers from attempting
to track a CAS-equipped vehicle into a crash.

The Synthesis component resolves potentially conflict-
ing control signals issued by CAS functions. This module
is critical for managing the complexity that arises from
component interactions. As mentioned previously, these
interactions may be quite subtle. However, by having a
central component responsible for these conflicts, these
interactions can be managed.

The Notification knowledge source must contain an
adaptive controller to ensure that signals sent to the driver
are appropriate for their cognitive ability. The logic of
this component will be quite complex, as it must gather
information about the limitations and experiences of a
driver. A learning module accompanies this knowledge
source. This module must be able to distinguish the cause
of unexpected reaction to alarms. Depending on whether
the cause is a false alarm, a misunderstood alarm, or an
alarm that overwhelmed a driver, appropriate corrections
to preferred warning modality should be made.

The static CAS knowledge sources play a role similar
to current CAS controllers. However, the controllers are
no longer optimized for median behavior, but rather to
ensure that the adaptive CAS neither reproduces faulty
behavior nor issues excessive false alarms. The static
controller will now raise alarms at the latest safe time, a
time at which a high level of crashes can be avoided. For
example, for forward following distance control, a one-
second warning would prevent 90% of accidents. (Woll,
1997)

Each adaptive CAS function is managed by two
knowledge sources. One provides the adaptive response
and the other monitors driver reaction to tune the
response for a particular driver. The learning technologies
that could be used to implement this adaptable control are
varied.

A simple scenario occurs if driver behavior can be
modeled accurately by a simple function with a few
adjustable parameters. For example, suppose, as shown
in Figure 7, following distance in heavy traffic can be
modeled by the spring damper diagram, which has been

Figure 7. Virtual bumper.

used as a control strategy for ACC. (Gorjecstani, 2000)
The CAS would produce a braking force or acceleration
force that is proportional force exerted by the system.
Then the spring and damping coefficients for a given
driver could be found using regression analysis.

Fuzzy logic controllers are another way to provide
adaptability. The controllers are appropriate if one
understands the rules that govern driver performance. For
example, fuzzy logic controllers are useful for longitu-
dinal control. (Araki et al., 1996)

For many CAS tasks, it will be impossible to divine the
structure of a function that models human driving
behavior. Even if the structure of a function can be
identified, the parameters to a function may vary based
on other environmental conditions. For example, since
the incidence of emergency braking increases in dense
traffic, a driver may naturally extend the length of a
virtual bumper under these conditions. (Hu et al., 1999)

For these situations, a lattice-like datafield or an
associative datafield may provide a simple and effective
control strategy. (Schmitt ez al., 1994) With these storage
devices, the value of the control parameter is found by
interpolating between a number of previously observed
values,

Unfortunately, many CAS functions will have too many
inputs for datafields to be effective. Drivers use many
more inputs than static CAS functions. For example, a
recent study found that like in a static CAS, driver's
perception of safe speed not only varied by road geometry
and type, but also based on whether the roadside
environment was open farming, heavily treed, or walled.
(Fildes er al., 1990)

In these cases, the control strategy might utilize neural
networks. Feed-forward neural networks have been
shown to be universal approximators of non-linear
functions. (Hornik ez al., 1989) Consequently, they are a
powerful tool if the structure of the underlying control
function is unknown. Drowsy driver detection is an area
where neural networks are being employed. Sayed and
Eskandarian proposed a neural network approach for
distinguishing drowsy drivers' steering activity and
generating a warning signal. (Sayed and Eskandarian,
2000) They report a high success rate based on driving
simulator data. Other systems include monitoring the
duration of time that the drivers' eyelids stay closed
during blinks. (Freund et al, 1995) Eskandarian and
Thiriez used a neural network model of human sensory
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motor responses for a collision avoidance system.
(Eskandarian and Thiriez, 1998) Hybrid neural network/
fuzzy controller strategies have been demonstrated for
learning obstacle avoidance behavior. (Sidani and
Gonzalez, 2000; Fangqin and Feng, 1999)

5. CONCLUSION

The development of a software architectures is crucial for
complex systems like CAS's. In a complex system such
as a CAS, the interconnections between the components
are as important as the components. In fact, these inter-
actions, left unexamined, can have disastrous effects. The
software architecture presented focused on managing
dangers manifested in these interactions.

By constructing the architecture through the composi-
tion of existing architectural styles, the resulting system
exhibits predictable qualities. Some of the qualities
represent limitations of the system. Other qualities
represent beneficial aspects that can satisfy stakeholder
requirements. The predicted limitations of the resulting
CAS translated into constraints imposed on components
or constraints that led to a particular choice of compo-
nents. The result is a robust design for an effective and
comprehensive Collision Avoidance System.
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