• Title/Summary/Keyword: collapse simulation

Search Result 221, Processing Time 0.02 seconds

Modeling of RC Frame Buildings for Progressive Collapse Analysis

  • Petrone, Floriana;Shan, Li;Kunnath, Sashi K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.1
    • /
    • pp.1-13
    • /
    • 2016
  • The progressive collapse analysis of reinforced concrete (RC) moment-frame buildings under extreme loads is discussed from the perspective of modeling issues. A threat-independent approach or the alternate path method forms the basis of the simulations wherein the extreme event is modeled via column removal scenarios. Using a prototype RC frame building, issues and considerations in constitutive modeling of materials, options in modeling the structural elements and specification of gravity loads are discussed with the goal of achieving consistent models that can be used in collapse scenarios involving successive loss of load-bearing columns at the lowest level of the building. The role of the floor slabs in mobilizing catenary action and influencing the progressive collapse response is also highlighted. Finally, an energy-based approach for identifying the proximity to collapse of regular multi-story buildings is proposed.

Progressive collapse analysis of steel building considering effects of infill panels

  • Zoghi, Mohammad Abbasi;Mirtaheria, Masoud
    • Structural Engineering and Mechanics
    • /
    • v.59 no.1
    • /
    • pp.59-82
    • /
    • 2016
  • Simplifier assumptions which are used in numerical studies of progressive collapse phenomenon in structures indicate inconsistency between the numerical and experimental full-scale results. Neglecting the effects of infill panels and two-dimensional simulation are some of these assumptions. In this study, an existing seismically code-designed steel building is analyzed with alternate path method (AP) to assess its resistance against progressive collapse. In the AP method, the critical columns be removed immediately and stability of the remaining structure is investigated. Analytical macro-model based on the equivalent strut approach is used to simulate the effective infill panels. The 3-dimentional nonlinear dynamic analysis results show that modeling the slabs and infill panels can increase catenary actions and stability of the structure to resist progressive collapse even if more than one column removed. Finally, a formula is proposed to determine potential of collapse of the structure based on the quantity and quality of the produced plastic hinges in the connections.

Collapse simulations of a long span transmission tower-line system subjected to near-fault ground motions

  • Tian, Li;Pan, Haiyang;Ma, Ruisheng;Qiu, Canxing
    • Earthquakes and Structures
    • /
    • v.13 no.2
    • /
    • pp.211-220
    • /
    • 2017
  • Observations from past strong earthquakes revealed that near-fault ground motions could lead to the failure, or even collapse of electricity transmission towers which are vital components of an overhead electric power delivery system. For assessing the performance and robustness, a high-fidelity three-dimension finite element model of a long span transmission tower-line system is established with the consideration of geometric nonlinearity and material nonlinearity. In the numerical model, the Tian-Ma-Qu material model is utilized to capture the nonlinear behaviours of structural members, and the cumulative damage D is defined as an index to identify the failure of members. Consequently, incremental dynamic analyses (IDAs) are conducted to study the collapse fragility, damage positions, collapse margin ratio (CMR) and dynamic robustness of the transmission towers by using twenty near-fault ground motions selected from PEER. Based on the bending and shear deformation of structures, the collapse mechanism of electricity transmission towers subjected to Chi-Chi earthquake is investigated. This research can serve as a reference for the performance of large span transmission tower line system subjected to near-fault ground motions.

Collapse Characteristics of Aluminum Extruded Sections and Crash Analysis Using Half Scale Model (알루미늄 압출재의 붕괴 특성 및 축소모형을 이용한 충격 해석 기법 연구)

  • 김범진;허승진;구정서;송달호
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.229-234
    • /
    • 2001
  • The aluminum extruded sections are used to the light construction of the high speed rail vehicle structures. However, the research works on the crashworthy design of aluminum extruded sections are not published sufficiently. In this paper, the collapse characteristics of aluminum extruded sections are investigated by crush test and simulation. The scale model studies are also performed to predict the impact energy absorption characteristics of full scale model through axial crush test and simulation.

  • PDF

Reliability analysis of double-layer domes with stochastic geometric imperfections

  • Gordini, Mehrdad;Habibi, Mohammad Reza;Sheidaii, Mohammad Reza;Tahamouliroudsari, Mehrzad
    • Advances in Computational Design
    • /
    • v.2 no.2
    • /
    • pp.133-146
    • /
    • 2017
  • This study aimed to investigate the effect of initial member length an imperfection in the load carrying capacity of double-layer domes space structures. First, for the member length imperfection of each member, a random number is generated from a normal distribution. Thereupon, the amount of the imperfection randomly varies from one member to another. Afterwards, based on the Push Down analysis, the collapse behavior and the ultimate capacity of the considered structure is determined using nonlinear analysis performed by the OpenSees software and this procedure is repeated numerous times by Monte Carlo simulation method. Finally, the reliability of structures is determined. The results show that the collapse behavior of double-layer domes space structures is highly sensitive to the random distribution of initial imperfections.

COLLAPSE CHARACTERISTICS OF ALUMINUM EXTRUSIONS FILLED WITH STRUCTURAL FOAM FOR SPACE FRAME VEHICLES

  • Kim, B.J.;Heo, S.J.
    • International Journal of Automotive Technology
    • /
    • v.4 no.3
    • /
    • pp.141-147
    • /
    • 2003
  • For improving high-safety, convenience, and ride comfort, the automotive design suffers from radical increase of the weight, the recycling-related rules, regulations on the waste gas, and environmental protection of the resources. Among them, it is well known that the weight increase is the most critical. Thus, in order to minimize the weight of the body-in-white that takes up 20-30% of the whole weight of the automobile, most automotive manufacturers have attempted to develop the aluminum intensive body-in-white using aluminum space frames. In this research, the crush test and simulation for aluminum extrusions are performed to evaluate the collapse characteristics of that light weighted material. Also. the same test and simulation was done for aluminum extrusions filled with structural foam. Then, these results are analyzed and compared. From these studies, the effectiveness of structural foam is evaluated in improving automotive crashworthiness. Finally, the design strategy and guideline of the structural form are suggested in order to improve the crashworthiness for aluminum space frame in the vehicle.

A Study on the Quantatitive Evaluation of Voltage Stability Improvement Effect By the T/L-Loss System Identification Method (송전손실 상태식별법을 이용한 전압안정성 개선효과의 정량적 평가에 관한 연구)

  • Choi, Jong-Key;Lee, Bong-Yong;Kim, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.45-47
    • /
    • 1994
  • The simulation of reactive power compensation in 5-bus and 25-bus system was conducted using transmission-line loss system identification method. Sensitivities of maximum load-power with respect to reactive power compensation was identified by the simulation. With sufficient reactive power compensation at the first voltage-collapsing load-bus, the first voltage collapse could be prevented until the next voltage-collapsing load-bus lost its voltage stability. And the total compensated reactive power at the first voltage-collapsing bus means reactive power margin of voltage collapse or distance to voltage collapse. This quantity can be useful for determining the size of compensating devices or the site to compensate.

  • PDF

Mechanism Analysis of Tunnel Collapse in Weak Ground (미고결 지반에서의 터널붕락 메커니즘 분석)

  • Lee, Jae-Ho;Jeong, Yun-Young;Kim, Young-Su;Moon, Hong-Duk
    • Tunnel and Underground Space
    • /
    • v.19 no.4
    • /
    • pp.339-347
    • /
    • 2009
  • Despite the recent improvement in tunnel excavation technique, Tunnel collapse accidents still happen. This paper suggest two typical cases in unconsolidated ground condition. Collapse causes of each case were analyzed by the measurement records and numerical simulation, and then mechanism of tunnel collapse was investigated about each case. From this study, the crucial indicators of tunnel collapse were the variation of shear strain and ground water level, also, tunnel collapse deeply related to how shear deformation around tunnel was developed according to the excavation step.

Visualization of the Water Column Collapse by using SMAC Method (SMAC법을 이용한 물기등 붕괴의 가시화)

  • Kim, Nam-Hyeong;Kim, Nam-Guk
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.6
    • /
    • pp.605-615
    • /
    • 2001
  • SMAC method, one of the numerical simulation techniques, is modified from the original MAC method for the time-dependent variation of fluid flows. The Navier-Stokes equations for incompressible time-dependent viscous flow is applied, and marker particles which present the visualization of fluid flaws are used. In this study, two-dimensional numerical simulations of the water column collapse are carried out by SMAC method, and the simulation results are compared with Martin and Moyce's experimental data and result of the MPS method. A good results are obtained. This numerical simulation could also be applied to the breaking phenomenon of hydraulic structures such as dam break.

  • PDF

A Study on Axial Collapse Characteristics of Spot Welded Double-Hat Shaped Section Members by FEM (FEM에 의한 점용접된 이중모자형 단면부재의 축방향 압궤특성에 관한 연구)

  • Cha, Cheon-Seok;Kim, Young-Nam;Yang, In-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.120-126
    • /
    • 2001
  • The widely used spot welded section members of vehicles are structures which absorb most of the energy in a front-end collision. In front-end collision, sufficiently absorbed in the front parts, the impact energy does not reach the passengers. Simultaneously, the frame gets less damaged. This structures have to be very stiff, but collapse progressively to absorb the kinetic energy as expected. In the view of stiffness, the double-hat shaped section member is stiffer than the hat shaped section member. In progress of collapse, the hat shaped section member is collapsing progressively, but the double-hat shaped section member does not due to stiffness. An analysis on the hat shaped section member was previously completed. This paper concerns the collapse characteristic of the double-hat shaped section member. In the program system presented in this study, an explicit finite element code, LS-DYNA3D is adopted for simulating complicate collapse behavior of double hat shaped section members with respect to spot weld pitches. And comparing with the results from the quasi-static and impact experiment, the simulation has been verified.

  • PDF