• Title/Summary/Keyword: collapse pressure

Search Result 279, Processing Time 0.031 seconds

Closed-Form Plastic Collapse Loads of Pipe Bends Under Combined Pressure and In-Plane Bending (압력과 모멘트의 복합하중을 받는 곡관의 소성 붕괴하중 예측식 개발)

  • Oh Chang-Sik;Kim Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.1008-1015
    • /
    • 2006
  • Based on three-dimensional (3-D) FE limit analyses, this paper provides plastic limit, collapse and instability load solutions for pipe bends under combined pressure and in-plane bending. The plastic limit loads are determined from FE limit analyses based on elastic-perfectly plastic materials using the small geometry change option, and the FE limit analyses using the large geometry change option provide plastic collapse loads (using the twice-elastic-slope method) and instability loads. For the bending mode, both closing bending and opening bending are considered, and a wide range of parameters related to the bend geometry is considered. Based on the FE results, closed-form approximations of plastic limit and collapse load solutions for pipe bends under combined pressure and bending are proposed.

Ramifications of Structural Deformations on Collapse Loads of Critically Cracked Pipe Bends Under In-Plane Bending and Internal Pressure

  • Sasidharan, Sumesh;Arunachalam, Veerappan;Subramaniam, Shanmugam
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.254-266
    • /
    • 2017
  • Finite-element analysis based on elastic-perfectly plastic material was conducted to examine the influence of structural deformations on collapse loads of circumferential through-wall critically cracked $90^{\circ}$ pipe bends undergoing in-plane closing bending and internal pressure. The critical crack is defined for a through-wall circumferential crack at the extrados with a subtended angle below which there is no weakening effect on collapse moment of elbows subjected to in-plane closing bending. Elliptical and semioval cross sections were postulated at the bend regions and compared. Twice-elastic-slope method was utilized to obtain the collapse loads. Structural deformations, namely, ovality and thinning, were each varied from 0% to 20% in steps of 5% and the normalized internal pressure was varied from 0.2 to 0.6. Results indicate that elliptic cross sections were suitable for pipe ratios 5 and 10, whereas for pipe ratio 20, semioval cross sections gave satisfactory solutions. The effect of ovality on collapse loads is significant, although it cancelled out at a certain value of applied internal pressure. Thinning had a negligible effect on collapse loads of bends with crack geometries considered.

A Study on the Collapse Strength Characteristics of Ship Bottom Plating Subject to Slamming Induced Impact Lateral Pressure Loads (선저슬래밍 충격횡압력을 받는 선체 판부재의 붕괴강도 특성에 관한 연구)

  • Jeom-Kee Park;Jang-Yang Chung;Young-Min Paik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.2
    • /
    • pp.77-93
    • /
    • 1999
  • The twin aims of the paper are to investigate the collapse strength characteristics of ship plating subject to impact pressure loads and to develop a simple structural design formula considering impact load effects. The general purpose nonlinear finite element program STARDYNE together with existing experimental results is used to investigate the collapse behavior of plating under impact pressure loads. The rigid plastic theory taking into account large deflection effects is applied to the development of the design formulation. In the theoretical method, the collapse strength formulation for plating subject to hydrostatic pressure is first derived using the rigid plastic theory. By including the strain rate erects in the formulation it can be applied to impact pressure problems. As illustrative examples, the collapse behavior of steel unstiffened plates and aluminum alloy stiffened panels subject to impact pressure loads is analyzed.

  • PDF

Effect of Internal Pressure on the Behavior of Wall Thinned Elbow under In-Plane Bending (In-plane 굽힘 조건에서 감육엘보우 거동에 미치는 내압의 영향)

  • Kim, Jin-Weon;Kim, Tae-Soon;Park, Chi-Yong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.268-273
    • /
    • 2004
  • This study is conducted to clarify the effect of internal pressure on the deformation and collapse behaviors of wall thinned elbow under in-plane bending moment. Thus the nonlinear three-dmensional finite element analyses were performed to obtain the moment-rotation curve of elbow contatining various wall thinning defects located at intrados and extrados under in-plane bending (closing and opening modes) with internal pressure of $0{\sim}15MPa.$ From the results of analysis, the effect of internal of collapse moment of elbow on the global deformation behavior of wall thinned elbow was discussed, and the dependence of collapse moment of elbow on the magnitude of internal pressure was investigated under different loading mode, defect location, and defect shape.

  • PDF

Prediction of Cavitation Intensity in Pumps Based on Propagation Analysis of Bubble Collapse Pressure Using Multi-Point Vibration Acceleration Method

  • Fukaya, Masashi;Ono, Shigeyoshi;Udo, Ryujiro
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.2
    • /
    • pp.165-171
    • /
    • 2009
  • We developed a 'multi-point vibration acceleration method' for accurately predicting the cavitation intensity in pumps. Pressure wave generated by cavitation bubble collapse propagates and causes pump vibration. We measured vibration accelerations at several points on a casing, suction and discharge pipes of centrifugal and mixed-flow pumps. The measured vibration accelerations scattered because the pressure wave damped differently between the bubble collapse location and each sensor. In a conventional method, experimental constants are proposed without evaluating pressure propagation paths, then, the scattered vibration accelerations cause the inaccurate cavitation intensity. In our method, we formulated damping rate, transmittance of the pressure wave, and energy conversion from the pressure wave to the vibration along assumed pressure propagation paths. In the formulation, we theoretically defined a 'pressure propagation coefficient,' which is a correlation coefficient between the vibration acceleration and the bubble collapse pressure. With the pressure propagation coefficient, we can predict the cavitation intensity without experimental constants as proposed in a conventional method. The prediction accuracy of cavitation intensity is improved based on a statistical analysis of the multi-point vibration accelerations. The predicted cavitation intensity was verified with the plastic deformation rate of an aluminum sheet in the cavitation erosion area of the impeller blade. The cavitation intensities were proportional to the measured plastic deformation rates for three kinds of pumps. This suggests that our method is effective for estimating the cavitation intensity in pumps. We can make a cavitation intensity map by conducting this method and varying the flow rate and the net positive suction head (NPSH). The map is useful for avoiding the operating conditions having high risk of cavitation erosion.

Effect of Circumferential Location of Local Well Thinning Defect on the Collapse Moment of Elbow (엘보우 붕괴모멘트에 미치는 국부 감육결함의 원주방향 위치에 대한 영향)

  • Kim Jin-Weon;Lee Jang-Gon
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.1 s.69
    • /
    • pp.55-61
    • /
    • 2005
  • The purpose of this study is to investigate the effect of circumferential location of local wall thinning defect on the collapse behavior of an elbow. Thus, the present study conducts three-dimensional finite element analysis on the 90-degree elbow containing a local wall thinning at intrados, crown and extrados of bend region and evaluates the collapse moment of wall thinned elbow under various thinning shapes and loading conditions. Combined internal pressure and bending moment are considered as an applied load. The internal pressure of $0\~20MPa$ and both closing and opening mode bending are employed. The results of analysis show that the reduction in collapse moment of the elbow by local wall thinning is more significant for a defect locating at crown than for a defect locating at intrados or at extrados. Also, the effect of internal pressure on the collapse moment of wall thinned elbow depends on the circumferential location of thinning defect and applied bending mode.

Numerical Modeling of the Mathematical Model of Single Spherical Bubble (단일 구형 기포의 수학적 모델에 대한 수치적 해석 모델)

  • Kang, Dong-Keun;Yang, Hyun-Ik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.731-738
    • /
    • 2010
  • Cavitation is described by formation and collapse of the bubbles in a liquid when the ambient pressure decreases. Formed bubbles grow and collapse by change of pressure, and when they collapse, shockwave by high pressure is generated. In general, bubble behavior can be described by Rayleigh-Plesset equation under adiabatic or isothermal condition and hence, phase shift by the pressure change in a bubble cannot be considered in the equation. In our study, a numerical model is developed from the mathematical model considering the phase shift from the previous study. In the developed numerical model, size of single spherical bubble is calculated by the change of mass calculated from the change of the ambient pressure in a liquid. The developed numerical model is verified by a case of liquid flow in a narrow channel.

Collapse mechanism for deep tunnel subjected to seepage force in layered soils

  • Yang, X.L.;Yan, R.M.
    • Geomechanics and Engineering
    • /
    • v.8 no.5
    • /
    • pp.741-756
    • /
    • 2015
  • The prediction of impending collapse of deep tunnel is one of the most difficult problems. Collapse mechanism of deep tunnel in layered soils is derived using a new curved failure mechanism within the framework of upper bound theorem, and effects of seepage forces are considered. Nonlinear failure criterion is adopted in the present analysis, and the possible collapse shape of deep tunnel in the layered soils is discussed in this paper. In the layered soils, the internal energy dissipations along velocity discontinuity are calculated, and the external work rates are produced by weight, seepage forces and supporting pressure. With upper bound theorem of limit analysis, two different curve functions are proposed for the two different soil stratums. The specific shape of collapse surface is discussed, using the proposed curve functions. Effects of nonlinear coefficient, initial cohesion, pore water pressure and unit weight on potential collapse are analyzed. According to the numerical results, with the nonlinear coefficient increase, the shape of collapse block will increase. With initial cohesion of the upper soil increase, the shape of failure block will be flat, and with the lower soil improving, the size of collapsing will be large. Furthermore, the shape of collapsing will decrease with the unit weight decrease.

Effect of Local Wall Thinning Defect on the Collapse Moment of Elbow (엘보우의 붕괴모멘트에 미치는 국부 감육결함의 영향)

  • Kim, Jin-Weon;Kim, Tae-Soon;Park, Chi-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.402-409
    • /
    • 2004
  • The purpose of this study is to investigate the effect of local wall thinning on the collapse of elbow subjected to internal pressure and bending moment. Thus, the nonlinear three-dimensional finite element analyses were performed to obtain the collapse moment of elbow containing various wall thinning defects located at intrados and extrados under two loading modes (closing and opening modes) with internal pressure. From the results of analysis, the effect of wall thinning defect on the global moment-rotation behavior of elbow was discussed, and the dependence of collapse moment of elbow on wall thinning depth, length, and circumferential angle was investigated under different loading mode and defect location.

Nonlinear Buckling Characteristics of Ring-stiffened Circular Cylinders under Uniform External Pressure (균일한 외압을 받는 원환보강 원통구조의 비선형 좌굴 특성)

  • Ahn, Dang;Kim, Soo-Young;Shin, Sung-Chul;Chung, Bo-Young;Koo, Youn-Hoe
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.79-84
    • /
    • 2012
  • This study aimed to analyze the nonlinear buckling of ring-stiffened circular cylinders under uniform external pressure, e.g. hydrostatic pressure, considering material nonlinearity and initial imperfection. In the present study, we analyzed the collapse pressure of pressure vessels using ANSYS Workbench, which is a framework of finite element methods. First, linear buckling analysis is performed to find collapse modes of the model. Second, scaling the first mode shape with small factor, geometric model is pre-deformed. And then, by analyzing the nonlinear buckling of the pre-deformed shape, the collapse pressure is estimated. To verify the validity of the analyses, we compared the results with Ross' experimental results. Finally, we applied it to ring-stiffened circular cylindrical shell of the pressure hull of a small submarine.