• Title/Summary/Keyword: collapse failure

Search Result 511, Processing Time 0.027 seconds

Optimum Failure Prediction Model of Steam Generator Tube with Two Parallel Axial Through-Wall Cracks (두개의 평행한 축방향 관통균열이 존재하는 증기발생기 세관의 최적 파손예측모델)

  • Lee, Jin-Ho;Song, Myung-Ho;Choi, Young-Hwan;Kim, Nak-Cheol;Moon, Seong-In;Kim, Young-Jin
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1186-1191
    • /
    • 2003
  • The 40% of wall criterion, which is generally used for the plugging of steam generator tubes, may be applied only to a single crack. In the previous study, a total of 9 failure models were introduced to estimate the local failure of the ligament between cracks and the optimum coalescence model of multiple collinear cracks was determined among these models. It is, however, known that parallel axial cracks are more frequently detected during an in-service inspection than collinear axial cracks. The objective of this study is to determine the plastic collapse model which can be applied to the steam generator tube containing two parallel axial through-wall cracks. Nine previously proposed local failure models were selected as the candidates. Subsequently interaction effects between two adjacent cracks were evaluated to screen them. Plastic collapse tests for the plate with two parallel through-wall cracks and finite element analyses were performed for the determination of the optimum plastic collapse model. By comparing the test results with the prediction results obtained from the candidate models, a plastic zone contact model was selected as an optimum model.

  • PDF

Optimum Global Failure Prediction Model of Inconel 600 Thin Plate with Two Parallel Through-Wall Cracks

  • Moon Seong In;Kim Young Jin;Lee Jin Ho;Song Myung Ho;Choi Young Hwan
    • Nuclear Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.316-326
    • /
    • 2004
  • The $40\%$ of wall criterion, which is generally used for the plugging of steam generator tubes, is applied only to a single crack. In a previous study, a total number of 9 failure models were proposed to estimate the local failure of the ligament between cracks, and the optimum coalescence model of multiple collinear cracks was determined among these models. It is, however known that parallel axial cracks are more frequently detected than collinear axial cracks during an in-service inspection. The objective of this study is to determine the plastic collapse model that can be applied to steam generator tubes containing two parallel axial through-wall cracks. Three previously proposed local failure models were selected as the candidates. Subsequently, the interaction effects between two adjacent cracks were evaluated to screen them. Plastic collapse tests for the plate with two parallel through-wall cracks and finite element analyses were performed to determine the optimum plastic collapse model. By comparing the test results with the prediction results obtained from the candidate models, a COD base model was selected as an optimum model.

Simplified robustness assessment of steel framed structures under fire-induced column failure

  • Jiang, Binhui;Li, Guo-Qiang;Yam, Michael C.H.
    • Steel and Composite Structures
    • /
    • v.35 no.2
    • /
    • pp.199-213
    • /
    • 2020
  • This paper proposes a Global-Local Analysis Method (GLAM) to assess the progressive collapse of steel framed structures under fire-induced column failure. GLAM obtains the overall structural response by combining dynamic analysis of the heated column (local) with static analysis of the overall structure (global). Test results of two steel frames which explicitly consider the dynamic effect during fire-induced column failure were employed to validate the proposed GLAM. Results show that GLAM gives reasonable predictions to the test frames in terms of both whether to collapse and the displacement verse temperature curves. Besides, several case studies of a two-dimensional (2D) steel frame and a three-dimensional (3D) steel frame with concrete slabs were conducted by using GLAM. Results show that GLAM gives the same collapse predictions to the studied cases with nonlinear dynamic analysis of the whole structure model. Compared with nonlinear dynamic analysis of the whole structure model, GLAM saves approximately 70% and 99% CPU time for the cases of 2D and 3D steel frame, respectively. Results also show that the load level of a structure has notable effects on the restraint condition of a heated column in the structure.

Seismic failure analysis and safety assessment of an extremely long-span transmission tower-line system

  • Tian, Li;Pan, Haiyang;Ma, Ruisheng;Dong, Xu
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.305-315
    • /
    • 2019
  • Extremely long-span transmission tower-line system is an indispensable portion of an electricity transmission system, and its failures or collapse can impact on the entire electricity grid, affect the modern life, and cause great economic losses. It is therefore imperative to investigate the failure and safety of the transmission tower subjected to ground motions. In the present study, a detailed finite element (FE) model of a representative extremely long-span transmission tower-line system is established. A segmental damage indicator (SDI) is proposed to quantitatively assess the damage level of each segment of the transmission tower under earthquakes. Additionally, parametric studies are conducted to investigate the influence of different ground motions and incident angles on the ultimate capacity and weakest segment of the transmission tower. Finally, the collapse fragility curve in terms of the maximum SDI value and PGA is plotted for the exampled transmission tower. The results show that the proposed SDI can quantitatively assess the damage level of the segments, and thus determine the ultimate capacity and weakest segment of the transmission tower. Moreover, the different ground motions and incident angles have a significant influence on the SDI values of the transmission tower, and the collapse fragility curve is utilized to evaluate the collapse resistant capacity of the transmission tower subjected to ground motions.

Progressive Collapse of Steel High-Rise Buildings Exposed to Fire: Current State of Research

  • Jiang, Jian;Li, Guo-Qiang
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.4
    • /
    • pp.375-387
    • /
    • 2018
  • This paper presents a review on progressive collapse mechanism of steel framed buildings exposed to fire. The influence of load ratios, strength of structural members (beam, column, slab, connection), fire scenarios, bracing systems, fire protections on the collapse mode and collapse time of structures is comprehensively reviewed. It is found that the key influencing factors include load ratio, fire scenario, bracing layout and fire protection. The application of strong beams, high load ratios, multi-compartment fires will lead to global downward collapse which is undesirable. The catenary action in beams and tensile membrane action in slabs contribute to the enhancement of structural collapse resistance, leading to a ductile collapse mechanism. It is recommended to increase the reinforcement ratio in the sagging and hogging region of slabs to not only enhance the tensile membrane action in the slab, but to prevent the failure of beam-to-column connections. It is also found that a frame may collapse in the cooling phase of compartment fires or under travelling fires. This is because that the steel members may experience maximum temperatures and maximum displacements under these two fire scenarios. An edge bay fire is more prone to induce the collapse of structures than a central bay fire. The progressive collapse of buildings can be effectively prevented by using bracing systems and fire protections. A combination of horizontal and vertical bracing systems as well as increasing the strength and stiffness of bracing members is recommended to enhance the collapse resistance. A protected frame dose not collapse immediately after the local failure but experiences a relatively long withstanding period of at least 60 mins. It is suggested to use three-dimensional models for accurate predictions of whether, when and how a structure collapses under various fire scenarios.

Risk Factors of Allogenous Bone Graft Collapse in Two-Level Anterior Cervical Discectomy and Fusion

  • Woo, Joon-Bum;Son, Dong-Wuk;Lee, Su-Hun;Lee, Jun-Seok;Lee, Sang Weon;Song, Geun Sung
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.4
    • /
    • pp.450-457
    • /
    • 2019
  • Objective : Anterior cervical discectomy and fusion (ACDF) is commonly used surgical procedure for cervical degenerative disease. Among the various intervertebral spacers, the use of allografts is increasing due to its advantages such as no harvest site complications and low rate of subsidence. Although subsidence is a rare complication, graft collapse is often observed in the follow-up period. Graft collapse is defined as a significant graft height loss without subsidence, which can lead to clinical deterioration due to foraminal re-stenosis or segmental kyphosis. However, studies about the collapse of allografts are very limited. In this study, we evaluated risk factors associated with graft collapse. Methods : We retrospectively reviewed 33 patients who underwent two level ACDF with anterior plating using allogenous bone graft from January 2013 to June 2017. Various factors related to cervical sagittal alignment were measured preoperatively (PRE), postoperatively (POST), and last follow-up. The collapse was defined as the ratio of decrement from POST disc height to follow-up disc height. We also defined significant collapses as disc heights that were decreased by 30% or more after surgery. The intraoperative distraction was defined as the ratio of increment from PRE disc height to POST disc height. Results : The subsidence rate was 4.5% and graft collapse rate was 28.8%. The pseudarthrosis rate was 16.7% and there was no association between pseudarthrosis and graft collapse. Among the collapse-related risk factors, pre-operative segmental angle (p=0.047) and intra-operative distraction (p=0.003) were significantly related to allograft collapse. The cut-off value of intraoperative distraction ${\geq}37.3%$ was significantly associated with collapse (p=0.009; odds ratio, 4.622; 95% confidence interval, 1.470-14.531). The average time of events were as follows: collapse, $5.8{\pm}5.7months$; subsidence, $0.99{\pm}0.50months$; and instrument failure, $9.13{\pm}0.50months$. Conclusion : We experienced a higher frequency rate of collapse than subsidence in ACDF using an allograft. Of the various preoperative factors, intra-operative distraction was the most predictable factor of the allograft collapse. This was especially true when the intraoperative distraction was more than 37%, in which case the occurrence of graft collapse increased 4.6 times. We also found that instrument failure occurs only after the allograft collapse.

Study on failure mechanism of multi-storeyed reinforced concrete framed structures

  • Ahmed, Irfan;Sheikh, Tariq Ahmad;Gajalakshmi, P.;Revathy, J.
    • Advances in Computational Design
    • /
    • v.6 no.1
    • /
    • pp.1-13
    • /
    • 2021
  • Failure of a Multi-storeyed reinforced concrete framed structure occurs when a primary vertical structural component is isolated or made fragile, due to artificial or natural hazards. Load carried by vertical component (column) is transferred to neighbouring columns in the structure, if the neighbouring column is incompetent of holding the extra load, this leads to the progressive failure of neighbouring members and finally to the failure of partial or whole structure. The collapsing system frequently seeks alternative load path in order to stay alive. One of the imperative features of collapse is that the final damage is not relative to the initial damage. In this paper, the effect on the column and beam adjacent to statically removed vertical element in terms of axial force, shear force and bending moment is investigated. Using Alternate load path method, numerical modelling of two dimensional one bay, two bay with variation in storey heights are analysed with FE model in order to obtain better understanding of failure mechanism of multi-storeyed reinforced concrete framed structure. The results indicate that the corner column is more susceptible to progressive collapse when compared to middle column, using this simplified methodology one can easily predict how the structure can be made to stay alive in case of sudden failure of any horizontal or vertical structural element before designing.

Effect of roof diaphragm on masonry structures under dynamic loading

  • Sathiparan, Navaratnarajah
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.351-366
    • /
    • 2016
  • The structural collapse of masonry structure under dynamic loading displays many possible failure mechanisms often related to interaction between structural components. Roof collapse is one of the major damage mechanisms observed in masonry structures during an earthquake. Better connection between the roof diaphragm and walls may be preventing roof collapse, but it can affect other failure mechanisms. In spite of this fact, less attention has been paid to the influence of the roof diaphragm effect on masonry structures and little research has been implemented in this field. In the present study, the roof diaphragm effect on the unreinforced masonry structure under dynamic loading has been experimentally investigated. Three one-quarter scale one-story adobe masonry house models with different roof conditions have been tested by subjecting them to sinusoid loading on a shaking table simulator. Phenomena such as failure pattern, dynamic performance of masonry structure were examined.

Slope Stability Assessment for Colluvial Soil Slumps of the Danyang Region (단양지역 붕적토 붕괴사면의 안정평가)

  • Bae, Woo-Seok;Lee, Bong-Jik;Jang, Kwang-Tak
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.3 s.81
    • /
    • pp.74-80
    • /
    • 2007
  • In this study, a documentary survey, face mapping, and stability analysis were performed on the collapsed colluvial soil slope. The purpose of this paper is to identify the cause of slope failure and determine slope stability for similar areas. Boring samples were extracted from the slump and laboratory tests were performed to find out the cause of slope failure. In addition, the limit equilibrium method was used in order to determine the stability of the slope. As a result of this investigation and the analysis of data, the type of collapse and cause of slope failure have been shown to have a strong correlation with the natural geographical and geological features which make up the collapse profile of the study area. These results will help to develop guidelines for formulating countermeasure methods.

Evaluation of Plastic Collapse Behavior for Multiple Cracked Structures (다중균열 구조물의 소성붕괴거동 평가)

  • Moon, Seong-In;Chang, Yoon-Suk;Kim, Young-Jin;Lee, Jin-Ho;Song, Myung-Ho;Choi, Young-Hwan;Hwang, Seong-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1813-1821
    • /
    • 2004
  • Until now, the 40% of wall thickness criterion, which is generally used for the plugging of steam generator tubes, has been applied only to a single cracked geometry. In the previous study by the authors, a total number of 9 local failure prediction models were introduced to estimate the coalescence load of two collinear through-wall cracks and, then, the reaction force model and plastic zone contact model were selected as the optimum ones. The objective of this study is to estimate the coalescence load of two collinear through-wall cracks in steam generator tube by using the optimum local failure prediction models. In order to investigate the applicability of the optimum local failure prediction models, a series of plastic collapse tests and corresponding finite element analyses for two collinear through-wall cracks in steam generator tube were carried out. Thereby, the applicability of the optimum local failure prediction models was verified and, finally, a coalescence evaluation diagram which can be used to determine whether the adjacent cracks detected by NDE coalesce or not has been developed.