• Title/Summary/Keyword: collagen solubility

Search Result 41, Processing Time 0.021 seconds

Does Tenderness of Korean Native Pork is Related Fiber type?

  • Hwang, I.H.;Park, B.Y.;Cho, S.H.;Kim, J.H.;Kim, D.H.;Kim, Y.K.;Kim, M.J.;Lee, J.M.
    • Proceedings of the Korean Society for Food Science of Animal Resources Conference
    • /
    • 2004.10a
    • /
    • pp.305-309
    • /
    • 2004
  • More a reddish color of KNBP was related to higher frequency of slower fiber type. Tender meat with a faster ageing rate for KNBP was coincided with a faster proteolytic rate, and likely a higher collagen solubility (data not shown). However, it is not confirmed whether the results were linked to the favorable pH/temperature window during rigor development, or fiber composition for tender meat.

  • PDF

Development of Anti-Wrinkle Materials using Galloyl-Peptide Derivatives (갈릭산 펩타이드 유도체를 이용한 주름개선 소재 개발)

  • Jung, Hae Soo;Song, Mi Young;Kim, Hyoung Sik;Seo, Hyo Hyun;Lee, Jeong Hun;Lee, Kyung Rok;Hong, Il;Moh, Sang Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5452-5457
    • /
    • 2015
  • Conjugating a phytochemical, a strong antioxidant, with a functional peptide not only compensates for its stability, but also improves its solubility and anti-wrinkle effects, thereby contributing to the possibility of becoming an excellent cosmetic ingredient. Thus, in this study we examined the potential cosmetic use of a phytochemical-peptide derivative using gallic acid, a phytochemical with antioxidant, anti-inflammatory, and anti-cancer effects. To evaluate the antioxidant and wrinkle-improving efficacy of 5 synthesized gallic acids conjugated with LVH, IVH, KTTKS, YGGFM, and YGGFLRKYP respectively, we observed the expression of genes related to wrinkle improvement using DPPH radical scavenging activity and real-time PCR. As a result, all 5 derivatives had excellent free radical scavenging effects. The expression level of genes involved collagen synthesis also increased, and the secreted peptides during collagen production contributed to their antioxidant and wrinkle improving effects. These results mark the potential use of gallic acid peptide derivatives as a cosmetic ingredient for anti-oxidation and wrinkle improvement.

Preparation and Characterization of the Hydrolyzed Protein from Shaving Scraps of Leather Waste Containing Chromium (피혁폐기물(皮革廢棄物)인 Shaving scraps으로 부터 가수분해(加水分解) 단백질(蛋白質)의 제조(製造) 및 특성(特性))

  • Kim, Won-Ju;Cho, Ju-Sik;Lee, Hong-Jae;Heo, Jong-Soo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.5 no.2
    • /
    • pp.47-56
    • /
    • 1997
  • To examine of possibility protein recycling of shaving scraps contained chrome generated from manufacturing process of leather, the characteristics of hydrolyzed protein that differently treated with MgO as alkaline agent were investigated. In alkaline hydrolysis of saving scraps treated with MgO, MgO had to be treated over 5.0% to maintain over pH 8.0 that is insoluble of chrome. Under the condition of alkaline treated with MgO, the solubility of chrome is low with about 60%. The average molecular weight of hydrolyzed proteins from shaving scraps treated with MgO was about 80~100 KD. The amino acid contents of that were largely collagen proteins such as glycine, alanine and proline, and acidic amino acids such as aspartic acid and glutatamic acid. The contents of Mg, Ca and Na in hydrolyzed protein were too much as liquid fertilizer, and chrome contents was 30~40 ppm that largely decreased in comparing with raw materials (40,000~42,000 ppm).

  • PDF

Enhancement of antimicrobial properties of shoe lining leather using chitosan in leather finishing

  • Mahmud, Yead;Uddin, Nizam;Acter, Thamina;Uddin, Md. Minhaz;Chowdhury, A.M. Sarwaruddin;Bari, Md. Latiful;Mustafa, Ahmad Ismail;Shamsuddin, Sayed Md.
    • Advances in materials Research
    • /
    • v.9 no.3
    • /
    • pp.233-250
    • /
    • 2020
  • In this study, a chitosan based coating method was developed and applied on the shoe lining leather surface for evaluating its inhibition to bacterial and fungal attacks. At first, chitosan was prepared from raw prawn shells and then the prepared chitosan solution was applied onto the leather surface. Secondly, the characterization of the prepared chitosan and chitosan treated leather was performed by solubility test, ATR-FTIR, XRD pattern, SEM and TGA. Evaluation of antimicrobial efficacy of chitosan was assessed against two gram positive, two gram negative bacteria and a reputed fungi by agar diffusion test. The results of this study demonstrated that chitosan took place in both the surface of collagen fibres and inside the collagen matrix of crust leather. The chitosan showed strong antimicrobial activities against all the tested microorganisms and the inhibition increased with increasing percentage of chitosan. Therefore, the prepared chitosan in this study can be an environment friendly biocide, which functions simultaneously against different spoilage bacteria and fungi on the finished leather surface. Thus by using the prepared chitosan in shoe lining leather, the possibility of microbial attack during shoe wearing can be minimized which is one of the important hygienic requirements of footwear.

Exploring the impact of various cooking techniques on the physicochemical and quality characteristics of camel meat product

  • Mouza Bahwan;Waqas N Baba;Oladipupo Adiamo;Hassan Mohammed Hassan;Ume Roobab;Olalere Olusegun Abayomi;Sajid Maqsood
    • Animal Bioscience
    • /
    • v.36 no.11
    • /
    • pp.1747-1756
    • /
    • 2023
  • Objective: The objective of this study was to evaluate the effects of four different cooking techniques viz: boiling, grilling, microwave, and frying; on the physicochemical characteristics of camel meat. Methods: Protein composition and their degradation as well as biochemical and textural changes of camel meat as influenced by cooking methods were investigated. Results: The highest cooking loss (52.61%) was reported in microwaved samples while grilled samples showed the lowest cooking loss (44.98%). The microwaved samples showed the highest levels of lipid oxidation as measured by thiobarbituric acid reactive substances, while boiled samples showed the lowest levels (4.5 mg/kg). Protein solubility, total collagen, and soluble collagen content were highest in boiled samples. Boiled camel meat had lower hardness values compared to the other treated samples. Consequently, boiling was the more suitable cooking technique for producing camel meat with a reduced hardness value and lower lipid oxidation level. Conclusion: The camel meat industry and camel meat consumer can benefit from this research by improving their commercial viability and making consumers aware about the effects of cooking procedures on the quality of camel meat. The results of this study will be of significance to researchers and readers who are working on the processing and quality of camel meat.

Objective Meat Quality and Volatile Components as a Function of Cooking Temperature in Beef Longissimus lumborum

  • Ji, Joong-Ryong;Park, Kyung-Mi;Choe, Ho-Sung;Hwang, In-Ho
    • Food Science of Animal Resources
    • /
    • v.30 no.3
    • /
    • pp.373-384
    • /
    • 2010
  • The present paper describes the effect of cooking temperature on objective meat qualities and volatile components in beef longissimus lumborum. Twenty samples of lumbar vertebrae longissimus muscle from Australian Black Angus (grain-fed and chiller aged for 29 d) were screened. Samples were cooked at 50, 70 or $90^{\circ}C$ in a pre-heated water bath for 1 h and uncooked raw samples were used as control. The results revealed that elevating the heating temperature from 50 to $90^{\circ}C$ led to a significant (p<0.05) increase in WB-shear force, total energy required for WB-shear force, cooking loss, pH and soluble collagen content, whereas a significant (p<0.05) linear decrease in protein solubility was observed. The results also revealed that the WB-shear force at $70^{\circ}C$ was significantly (p<0.05) lower than that observed at $50^{\circ}C$ and $90^{\circ}C$. However, the effect of temperature on cooking loss and protein solubility was notably (p<0.05) higher at $70^{\circ}C$. The detectable volatile components were mostly produced from fat oxidation, and temperature effects on the generation of volatile components were significantly (p<0.05) greater for aldehydes (hexanal, benzaldehyde, nonanal and octanal) than for ketones and hydrocarbons (hexane, benzene, decan, toluene and 3-methylnonane).

The alternative approach of low temperature-long time cooking on bovine semitendinosus meat quality

  • Ismail, Ishamri;Hwang, Young-Hwa;Bakhsh, Allah;Joo, Seon-Tea
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.2
    • /
    • pp.282-289
    • /
    • 2019
  • Objective: This study aimed to elucidate whether innovative sous vide treatment has a significant influence on the beef semitendinosus muscle as compared to common sous vide treatment and traditional cooking. Methods: The innovative sous vide treatments were cooked at $45^{\circ}C$ and $65^{\circ}C$ for 6 h (SV45-65), common sous vide treatment at $45^{\circ}C$ and $65^{\circ}C$ for 3 h (SV45 and SV65) and traditional cooking at $75^{\circ}C$ for 30 min (CON75). Water loss and cooking loss, as well as the physical properties (color and shear force) and chemical properties (protein and collagen solubility) of the treated meat, were investigated. Results: The results obtained indicated that the innovative sous vide with double thermal treatment (SV45-65) and cooked with air presence (CON75) resulted to lower $a^*$ and higher $b^*$ values, respectively. The water loss and cooking loss increased when temperature increased from $45^{\circ}C$ to $65^{\circ}C$, and lower water loss was recorded in SV45 and CON75. These samples presented higher water content and revealed strong correlation to protein solubility. Warner-Bratzler shear force (SF) analysis showed the marked interaction between cooking temperature and time. Sample cooked at a high temperature (CON75) and a long period (SV45-65) showed a significantly lower value of SF than sample SV65 (p<0.05). Interestingly, there was no difference in SF values between SV45-65 and CON75. Conclusion: The innovative sous vide treatment with double thermal effect appears an attractive cooking method as compared to common sous vide and traditional cooking method, as it has a potential for improving tenderness values of cooked beef semitendinosus muscle.

The Effect of Irradiation on Meat Products

  • Yea-Ji Kim;Ji Yoon Cha;Tae-Kyung Kim;Jae Hoon Lee;Samooel Jung;Yun-Sang Choi
    • Food Science of Animal Resources
    • /
    • v.44 no.4
    • /
    • pp.779-789
    • /
    • 2024
  • The effects of irradiation on meat constituents including water, proteins, and lipids are multifaceted. Irradiation leads to the decomposition of water molecules, resulting in the formation of free radicals that can have both positive and negative effects on meat quality and storage. Although irradiation reduces the number of microorganisms and extends the shelf life of meat by damaging microbial DNA and cell membranes, it can also accelerate the oxidation of lipids and proteins, particularly sulfur-containing amino acids and unsaturated fatty acids. With regard to proteins, irradiation affects both myofibrillar and sarcoplasmic proteins. Myofibrillar proteins, such as actin and myosin, can undergo depolymerization and fragmentation, thereby altering protein solubility and structure. Sarcoplasmic proteins, including myoglobin, undergo structural changes that can alter meat color. Collagen, which is crucial for meat toughness, can undergo an increase in solubility owing to irradiation-induced degradation. The lipid content and composition are also influenced by irradiation, with unsaturated fatty acids being particularly vulnerable to oxidation. This process can lead to changes in the lipid quality and the production of off-odors. However, the effects of irradiation on lipid oxidation may vary depending on factors such as irradiation dose and packaging method. In summary, while irradiation can have beneficial effects, such as microbial reduction and shelf-life extension, it can also lead to changes in meat properties that need to be carefully managed to maintain quality and consumer acceptability.

Functional Properties of Mechanically Deboned Chicken Meat from Various Chicken Parts (부위별로 제조된 기계발골 계육의 가공적성에 관한 연구)

  • 이성기;김희주;김용재;조규석;김종원
    • Korean Journal of Poultry Science
    • /
    • v.21 no.4
    • /
    • pp.277-284
    • /
    • 1994
  • The functional properties of mechanically deboned chicken meat(MDCM) from whole carcass, whole carcass without exsanguination, neck without skin, leg hone, and upper back and rib were studied. Also, the effects of adding different levels of gelatin and MDCM to the comminuted meats were investigated. Proximate composition values of MDCM ranged from 54.2 to 68.6% moisture, 14.5 to 19.7% protein, 12.3 to 30.1% fat, and 1.1 to 1.3% ash. The MDCM from leg hone had a higher content of fat, and a lower contents of moisture and protein. The MDCM from neck without skin tended to be opposite to the MDCM from leg hone. The total pigment and myoglobin levels were highest in MDCM from whole carcass without exsanguination such as 3.83 and 0.29 rng /g, and those from the other parts were 1.58~2.93 mg /g and 0. 17~0.31 mg /g, respectively. The emulsifying capacity and water holding capacity were highest in MDCM from neck without skin which contained lower levels of fat, collagen and hydroxyproline, but a higher level of salt soluble protein. The emulsifying capacity of comminuted meat decreased as gelatin content increased. The extractability of hydroxyproline from gelatin showed a higher solubility in acidic solution. The MDCM could he added up to 20% level without detrimentally affecting functional properties of comminuted meats although they had less water holding capacity and cooking loss as the proportion of MDCM increased.

  • PDF

Tenderness-related index and proteolytic enzyme response to the marination of spent hen breast by a protease extracted from Cordyceps militaris mushroom

  • Barido, Farouq Heidar;Lee, Sung Ki
    • Animal Bioscience
    • /
    • v.34 no.11
    • /
    • pp.1859-1869
    • /
    • 2021
  • Objective: The effects of a crude protease extracted from Cordyceps militaris (CM) mushrooms on the postmortem tenderization mechanism and quality improvement in spent hen breast were investigated. Methods: Different percentages of the crude protease extracted from CM mushrooms were introduced to spent hen breast via spray marination, and its effects on tenderness-related indexes and proteolytic enzymes were compared to papain. Results: The results indicated that there was a possible improvement by the protease extracted from CM mushroom through the upregulation of endogenous proteolytic enzymes involved in the calpain system, cathepsin-B, and caspase-3 coupled with its nucleotide-specific impact. However, the effect of the protease extracted from CM mushroom was likely dose-dependent, with significant improvements at a minimum level of 4%. Marination with the protease extracted from CM mushroom at this level led to increased protein solubility and an increased myofibrillar fragmentation index. The sarcoplasmic protein and collagen contents seemed to be less affected by the protease extracted from CM mushroom, indicating that substrate hydrolysis was limited to myofibrillar protein. Furthermore the protease extracted from CM mushroom intensified meat product taste due to increasing the inosinic acid content, a highly effective salt that provides umami taste. Conclusion: The synergistic results of the proteolytic activity and nucleotide-specific effects following treatments suggest that the exogenous protease derived from CM mushroom has the potential for improving the texture of spent hen breast.