• Title/Summary/Keyword: collagen powder

Search Result 53, Processing Time 0.03 seconds

Effect of the supplementation of pig skin collagen on growth performance, organ weight, blood characteristics and intestinal microbiota in broilers

  • An, Ji Seon;Yun, Won;Lee, Ji Hwan;Oh, Han Jin;Kim, Young Gwang;Bae, In Kyu;Kim, Kwon Jung;Lee, Ju Ho;Kim, Gok Mi;Choi, Yang Il;Cho, Jin Ho
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.3
    • /
    • pp.559-567
    • /
    • 2019
  • This experiment was conducted to investigate the effects of pig skin collagen supplementation on growth performance, organ weight, blood characteristics, and intestinal microbiota in broilers. A total of 50 Ross 308 broilers were used for 2 weeks. The five dietary treatments were as follows: NC) basal diet, PC) NC + fish collagen powder 0.1%, T1) NC + pig skin collagen 0.1%, T2) NC + pig skin collagen 0.5%, and T3) NC + pig skin collagen 1.0%. The body weight gain (BWG), feed intake (FI), and feed conversion ratio (FCR) were not affected (p > 0.05) by the dietary treatments in this experiment. Additionally, there were no significant differences (p > 0.05) in the organ weights among the treatments. Broilers fed T1, T2 and T3 diets had higher (p < 0.05) white blood cell (WBC) counts than the broilers fed the NC and PC diets. The Lactobacillus counts in the excreta were improved (p < 0.05) in the broilers fed the T1 and T2 diets. Moreover, the Salmonella counts in the excreta were decreased (p < 0.05) in the broilers fed the PC and T1 diets. In conclusion, supplementation of pig skin collagen in diets improved the white blood cells (WBCs) in the blood and Lactobacillus counts in the excreta, and reduced the Salmonella counts in the excreta. However, when pig skin collagen was increased in the diets, there were no significant differences (p > 0.05). Therefore, the addition of 0.1% pig skin collagen in the feed provided beneficial effects on the blood characteristics and the intestinal microbiota environment.

Regulatory mechanism of Angelica Gigas extract powder on matrix metalloproteinases in vitro and in vivo model (참당귀 추출분말이 in vitro and in vivo model에서 MMPs 조절 기전)

  • Kwon, Jin-Hwan;Han, Min-Seok;Lee, Yong-Moon
    • Analytical Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.361-369
    • /
    • 2015
  • The precise mechanism underlying the therapeutic efficacy of an extraction powder of Angelica gigas (AGE) for the treatment of degenerative osteoarthritis was investigated in primary cultured rabbit chondrocytes and in a monosodium-iodoacetate (MIA)-induced osteoarthritis rat model. The treatment with AGE (50 μg/mL) effectively inhibited NF-B activation. The anti-inflammatory mechanism was clarified by gelatin zymography and western blotting measurements of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) activities. The AGE (50 μg/mL) treatment significantly reduced MMP-9 activity. The constituents of AGE— decursinol, decursin, and decursinol angelate—were determined by LC-MS/MS after a 24 hr treatment of rabbit chondrocytes. The contents of the major products, decursin and decursinol angelate, were 3.62±0.47 and 2.14 ±0.36 μg/mg protein, respectively in AGE-treated (50 μg/mL) rabbit chondrocytes. An in vivo animal study on rats fed a diet containing 25, 50, and 100 mg/kg AGE for 3 weeks revealed a significant inhibition of the MMPs in the MIA-induced rat articular cartilage. The genetic expression of arthritic factors in the articular cartilage was examined by RT-PCR of collagen Type I, collagen Type II, aggrecan, and MMP (MMP3, MMP-9, MMP13). Specifically, AGE up-regulated the expression of collagen Type I, collagen Type II, and aggrecan and inhibited MMP levels at all tested concentrations. Collectively, AGE showed a strong specific site of action on MMP regulation and protected against the degeneration of articular cartilage via cellular regulation of MMP expression both in vitro and in vivo.

Application of a Composite Skin Equivalent using Collagen and Acellular Dermal Matrix as the Scaffold in a Mouse Model of Full-thickness Wound (콜라겐과 무세포진피를 이용한 혼합형 인공피부 개발 및 쥐 모델에서 창상치료 적용)

  • Lee, Dong Hyuck;Youn, Jin Chul;Lee, Jung Hee;Kim, In Seop
    • KSBB Journal
    • /
    • v.29 no.1
    • /
    • pp.42-49
    • /
    • 2014
  • The aim of this study was to develop a composite human skin equivalent for wound healing. Collagen type1 and acellular dermal matrix powder were utilized as the scaffold with dermal fibroblasts and keratinocytes for the development of a composite human skin equivalent. Fibroblast maintained the volume of composite skin equivalent and also induced keratinocytes to attach and proliferate on the surface of composite skin equivalent. The composite human skin equivalent had a structure and curvature similar to those of real skin. Balb-C nu/nu mice were used for the evaluation of full-thickness wound healing effect of the composite human skin equivalent. Graft of composite skin equivalent on full-thickness wound promoted re-epithelialization and granulation tissue formation at 9 days. Given the average wound-healing time (14 days), the wound in the developed composite skin equivalent healed quickly. The overall results indicated that this three-dimensional composite human skin equivalent can be used to effectively enhance wound healing.

TISSUE CHANGE AFTER EMBEDDING GELATIN MATRIX IMPLANT(FFIBREL®) IN SUBCUTANEOUS TISSUE OF RATS;HISTOLOGIC, IMMUNOHISTOCHEMICAL AND SCANNING ELECTRON MICROSCOPIC STUDY (백서의 피하조직에 Gelatin Matrix Implant (Fibrel®) 매식시 조직변화에 관한 연구)

  • Kim, Hong-Jin;Lee, Chong-Heon;Kim, Kyung-Wook
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.20 no.4
    • /
    • pp.341-354
    • /
    • 1998
  • GMI (Fibrel${(R)}$) is one of the dermal filling substances which have been successfully used for the treatment of depressed cutaneous scar and wrinkles. It's major components are; Gelatin powder, which provides a framework for the clot to form and remains stable under the scar, and ${\varepsilon}$-aminocaproic acid, which inhibits the production of fibrinolysin, and Plasma, which provides the necessary ingredients for collagen synthesis. GMI has advantages of low immunogenicity and increased longevity. It has been known to induce fibroblast activity and promote new collagen synthesis. We used 34 Sprague-Dawley rats which were bred under the same condition and duration. 18 of experimental animals were undergone cardiac puncture, and their blood were collected, centrifugated, and stored in freezer. Out of 16 animals, control group were injected with 2ml plasma into the subcutaneous tissue of Lt. scapular, while experimental group were implanted of 2 ml GMI into the Rt. same area. Experimental animals were sacrificed at the 3rd day, 5th day, 1st week and 2nd week respectively after implantation of GMI. To observe the histopathologic change of GMI and surrounding tissue reaction of GMI, we had examined with H&E staining, immunohistochemical staining with vimentin, ${\alpha}$-SMA, S-100 under LM and SEM. The obtained results were as follows ; 1. In LM study, the inflammatory cell infiltrations and granulation tissue formation were observed, and muscle tissues were well attached with adipose tissues in the control group. In the experimental group, inflammatory cell infiltrations had been observed by the 2nd week and irregular adipiose tissues and well differentiated mesenchymal tissues were examined. 2. In immunohistochemical study, the experimental group of ${\alpha}$-SMA study, there were a prominent positive response on endothelial development of granulation tissues and mesenchymal tissues compare with the control group. In vimentin study, positive response on mescenchymal fibroblast continued to 2nd week, but negative in the control group. In S-100 study, both groups were positively responded on irregular adipose tissues. 3. In SEM study, collagen fibers were embedded by the plasma by the 5th day in the control group, and in the 3rd day experiment GMI were resorved but communited with collagen fiber till the 1st week. Collagen fibers were infilt-rated into GMI at the 2nd week and the infilltrated GMI were conglomerated with the mature adipose cells and the collagen fibers. From the above results, GMI implantation in the subcutaneous tissue of Sprague-Dawley rat, the mild infiltration of inflammatory cells were showed till 2nd week and the granulation tissues were observed. GMI were nearly resorbed till 2nd week, but well attached with adipose tissue and collagen fibers. The endothelium and fibroblasts were actively proliferated. Adipose tissues and mesenchymal tissue cells were observed. As already expressed, GMI showed resorptive change in course of time without any early immune reaction, and seemed to induce fibroblast activity and promote new collagen synthesis.

  • PDF

Immediate Autogenous Fresh Demineralized Tooth (Auto-FDT) Graft for Alveolar Bone Reconstruction (즉시 탈회 치아이식재를 사용한 치조골 재건술)

  • Lee, Eun-Young
    • The Journal of the Korean dental association
    • /
    • v.54 no.5
    • /
    • pp.348-355
    • /
    • 2016
  • Ideal autogenous or allogenic bone graft materials should provide 1) stabilization of blood clot, 2) scaffolds for cellular proliferation and differentiation, 3) release of osteogenic growth factors, 4) appropriate resorption profile for remodeling of new bone. Teeth, especially dentin, mostly contain hydroxyapatite and type I collagen which are similar to bone, and could be valuable graft material. Clinically teeth are used as calcined or demineralized forms. Demineralized form of dentin can be more effective as a graft material. But a conventional decalcification method takes time and long treatment time may give negative effects to various osteogenic proteins in dentin. Author used a new clinical method to prepare autogenous teeth, which could be grafted into the removal defects immediately after extraction using vacuum ultrasonic system. The process could be finished within two hours regardless of the form (powder, chip or block). Teeth were processed to graft materials in block, chip, or powder types immediately after extraction. It took 120 minutes to prepare block types and 40 minutes to prepare powder. Clinical cases did not show any adverse response and the healing was favorable. Rapid preparation of autogenous teeth with the vacuum ultrasonic system could make the immediate one-day extraction and graft possible.

  • PDF

A Study on the Characteristics of Salad Dressings Containing Chicken Foot Gelatin (닭발 추출 젤라틴을 이용한 샐러드 드레싱의 품질 특성)

  • Shin, Mee-Hye;Kim, Jong-Goon;Kang, Kun-Og
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.18 no.1
    • /
    • pp.58-63
    • /
    • 2008
  • This study was conducted to present fundamental data on the physicochemical properties and sensory qualities of salad dressings made with chicken foot gelatin. Preliminary experiments were performed to confirm the gelatin powder concentrations in preparing gelatin solutions. A 2% gelatin solution, including 0.5% agar, was prepared for use in the experiments that followed. Sensory evaluations were conducted to compare the organoleptic acceptance of dressings manufactured with differing concentrations of the additive in seasoning soybean sauce, mayonnaise, and sesame powder. The viscosities of the dressings significantly increased with increasing gelatin powder concentration. A decrease in turbidity was observed in the mayonnaise and sesame dressings. The color difference values of all dressings indicated no changes. In sensory evaluations of dressings prepared with gelatin solutions at different concentrations of 2 g (1%), 4 g (2%), and 8 g (4%) of gelatin powder, the 4 g (2%) sample received the highest score for overall acceptance. From this study, which was conducted to find an efficient use for chicken house wast product, it is anticipated that chicken feet will be utilized as a new raw material for producing collagen and gelatin, protein sources widely increasing in use with in the food and bio-industries.

  • PDF

Synthesis and Characterization of Collagen Peptide Based Copolymer from Shaving Scrap (셰이빙 스크랩으로부터 콜라겐 펩타이드계 공중합체 합성과 특성)

  • Park, Min Seok;Shin, Soo Beom;Kim, Ho Soo;Kim, Min Soo;Kim, Ha Sun;Jang, Jae Hyeok;Lee, Jin Kye;Lee, Dong Kuk
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.581-587
    • /
    • 2022
  • The leather industry generates a large amount of hazardous leather waste of various types every year. Among them, shaving scrap is difficult to recycle because it contains chromium ions. Many studies in recent years have shown that shaving scraps can be processed into various types of valuable products, such as adsorbent, filler, and poultry feed. In this study, collagen peptides were extracted from shaving scraps and structurally modified to be developed as new materials with improved physicochemical properties. First, the chromium ions contained in the shaving scraps were removed using a sodium hydroxide solution, and purified through concentration and low-temperature crystallization. The purified collagen peptide was used to prepare the powder using a spray dryer. The extracted collagen peptides were structurally modified by introducing double bonds by reacting with methacrylic anhydride (MAA), and the product was confirmed by 1H NMR spectroscopy. Next, a copolymer was prepared by redox polymerization of the modified collagen peptide (MCP) and 2-ethylhexyl acrylate (2-EHA). The structure of the copolymer was qualitatively confirmed by FT-IR. In conclusion, this study confirmed that collagen peptides can be extracted from shaving scrap and converted into new eco-friendly materials through certain treatments.

Effect of Porcine Collagen Peptides on the Rheological and Sensory Properties of Ice Cream

  • Li, Liying;Kim, Jae-Hyeong;Jo, Yeon-Ji;Min, Sang-Gi;Chun, Ji-Yeon
    • Food Science of Animal Resources
    • /
    • v.35 no.2
    • /
    • pp.156-163
    • /
    • 2015
  • The effects of low molecular-weight collagen peptides derived from porcine skin were investigated on the physicochemical and sensorial properties of chocolate ice cream. Collagen peptides less than 1 kDa in weight were obtained by sub-critical water hydrolysis at a temperature of $300^{\circ}C$ and a pressure of 80 bar. Ice cream was then prepared with gelatin powder and porcine skin hydrolysate (PSH) stabilizers mixed at seven different ratios (for a total of 0.5 wt%). There was no significant difference in color between the resulting ice cream mixtures. The increase in apparent viscosity and shear thinning of the ice cream was more moderate with PSH added than with gelatin. Moreover, the samples containing more than 0.2 wt% PSH had enhanced melting resistance, while the mixture with 0.2 wt% PSH had the lowest storage modulus at $-20^{\circ}C$ and the second highest loss modulus at 10℃, indicating that this combination of hydrocolloids leads to relatively softer and creamier chocolate ice cream. Among the seven types of ice creams tested, the mixture with 0.2 wt% PSH and 0.3 wt% gelatin had the best physicochemical properties. However, in sensory evaluations, the samples containing PSH had lower chocolate flavor scores and higher off-flavor scores than the sample prepared with just 0.5 wt% gelatin due to the strong off-flavor of PSH.

A Case Report of Guided Bone Regeneration Using a Putty-type Demineralized Bone Matrix (골유도재생술에 대한 putty형 탈회 기질골 이용연구)

  • Jeong, Mi-Ae
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12a
    • /
    • pp.330-333
    • /
    • 2011
  • Allomatrix (Wright Medical Tech, Inc., USA), is a newly designed, injectable putty with a reliable demineralized bone matrix(DBM), derived from human bone. The compound contains 86% DBM and other bone growth factors such as bone morphogenic protein (BMP)-2, BMP-4, insulin-like growth factor (IGF)-1, and transforming growth factor (TGF)-${\beta}1$. It has excellent os-teoinduction abilities. In addition, DBM is known to have osteoconduction capacity as a scaffold due to its collagen matrix. This product contains a powder, which is a mix of DBM and surgical grade calcium sulfate as a carrier. A practitioner can blend the powder with calcium sulfate solution, making a putty-type material which has the advantages of ease of handling, better fixation, and no need for a membrane, because it can function as membrane itself. This study reports the clinical and radiographic results of various guided bone regeneration cases using Allomatrix, demonstrating its strong potential as a graft material.

  • PDF

Inhibitory Effect of Artemisiae Capillaris Herba on Fibrogenesis in Primary Cultured Rat Hepatic Stellate Cells (인진이 간성상세포의 섬유화 억제에 미치는 영향에 대한 연구)

  • Kim, Young-Chul;Lee, Jang-Hoon;Woo, Hong-Jung
    • The Journal of Internal Korean Medicine
    • /
    • v.26 no.4
    • /
    • pp.853-863
    • /
    • 2005
  • Object : This study was performed to investigate the anti-fibrogenic effect of Artemisiae Capillaris Herba(ACH) on cultured rat hepatic stellate cells. Methods : Hepatic Stellate Cells were obtained from a 350gm Sprague-Dawley rat by tissue perfusion system, and the cells for the study were selected after 3 passages of culture on non-coated plastic culture dishes which enable the cells to activate, thus producing collagens in the cell media. Cells were treated with various concentrations of Artemisia Capillaris Herba(ACH) extract powder for 24 or 48 hours. After the treatment, Soluble collagen, procollagen levels and the mRNA of the procollagen type I C were measured by using assay kit and RT-PCR method. Results : Procollagen production by the hepatic stellate cells decreased after the treatment in a time-dependent dose-dependent manner. The mRNA expression decreased consistently with the volume of the secreted procollagen which indicates the herb hat inhibitory effect on fibrogenesis of the liver by regulating one of the fibrosis associated genes in transcription. Conclusion : These results suggest that ACH is beneficial in the treatment of cirrhotic patients as well as for the patients with chronic hepatitis.

  • PDF