• Title/Summary/Keyword: coliphage

Search Result 16, Processing Time 0.024 seconds

Identification of two coliphages from Han-river and its adsorption-elution effect on soil materials (한강에서 분리한 이종 coliphage의 동정과 점토질에 대한 흡착 및 용출효과)

  • 홍순우;하영칠;안태석;이영숙
    • Korean Journal of Microbiology
    • /
    • v.20 no.4
    • /
    • pp.210-222
    • /
    • 1982
  • Coliphages isolated from Han-River from September 1980 to August 1981 were classified by morphological and physiological characteristics. Effects of soil metrial on the fate of coliphage in nature were investigated. 1. The correlation coefficient between coliphage and E.coli which was host of coliphages in nature was 0.7173 (p=0.004). 2. Coliphage I isolated from Han-River of which DNA molecular weight was $27{\times}10^6$ daltons was identified as $T_1$ phage and coliphage II of which DNA molecular weight $72{\times}10^6$ daltons was classified as $T_5$ phage. 3. Soil material SW was composed of 63.65% silt and 21.92% clay. Clay was consisted of illite, kaolinite and chlorite evenly. Soil material J was composed of 68.92% silt and 11.67% clay. Clay consisted of smectite only. 4. Coliphage was absorbed to soil material J more than soil material SW, and $T_1$ coliphage was absorbed to soil material more than $T_5$ coliphage was. 5. The phage adsorption efficiency to soil material was enhanced at lower pH : the phage adsorption efficiency at pH 4 was 27 time higher than at pH 7. 6. Divalent $(Ca^{2+})\;and\;trivalention\;(Al^{3+})$ enhanced the phage adsorption efficiency to soil material from 4 to 39 and from 17 to 91 times higher than monovalent $ion(Na^+)$, respectively. 7. The concentration of organic compound was inversely related to the phage adsorption efficiency to soil. 8. Adsorption of phage onto soil material, and elution efficiency of elutants was in the order of D.D.W>tap water>river water>seawater. 9. The higher the concentration of organic compound was, the more were adsorbed phages to soil eluted. 10. Coliphages survived longer in sterile soil suspension than in nonsterile soil material suspension.

  • PDF

Applicability Evaluation of Male-Specific Coliphage-Based Detection Methods for Microbial Contamination Tracking

  • Kim, Gyungcheon;Park, Gwoncheol;Kang, Seohyun;Lee, Sanghee;Park, Jiyoung;Ha, Jina;Park, Kunbawui;Kang, Minseok;Cho, Min;Shin, Hakdong
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.12
    • /
    • pp.1709-1715
    • /
    • 2021
  • Outbreaks of food poisoning due to the consumption of norovirus-contaminated shellfish continue to occur. Male-specific (F+) coliphage has been suggested as an indicator of viral species due to the association with animal and human wastes. Here, we compared two methods, the double agar overlay and the quantitative real-time PCR (RT-PCR)-based method, for evaluating the applicability of F+ coliphage-based detection technique in microbial contamination tracking of shellfish samples. The RT-PCR-based method showed 1.6-39 times higher coliphage PFU values from spiked shellfish samples, in relation to the double agar overlay method. These differences indicated that the RT-PCR-based technique can detect both intact viruses and non-particle-protected viral DNA/RNA, suggesting that the RT-PCR based method could be a more efficient tool for tracking microbial contamination in shellfish. However, the virome information on F+ coliphage-contaminated oyster samples revealed that the high specificity of the RT-PCR- based method has a limitation in microbial contamination tracking due to the genomic diversity of F+ coliphages. Further research on the development of appropriate primer sets for microbial contamination tracking is therefore necessary. This study provides preliminary insight that should be examined in the search for suitable microbial contamination tracking methods to control the sanitation of shellfish and related seawater.

Effect of Heat Treatment on Male specific Coliphage and Norovirus Concentrations in Norovirus Contaminated Oyster Crassostrea gigas (가열처리 조건에 따른 오염굴(Crassostrea gigas) 중의 Male Specific Coliphage와 노로바이러스 농도변화)

  • Park, Kunbawui;Park, Yong Su;Kwon, Ji Young;Yu, Hong Sik;Lee, Hee Jung;Kim, Ji Hoe;Lee, Tae Seek;Kim, Poong Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.6
    • /
    • pp.898-903
    • /
    • 2015
  • Noroviruses (NoV) are known to cause acute epidemic gastroenteritis worldwide. Outbreak strains are predominantly genogroup I (GI) and genogroup II (GII) in oysters Crassostrea gigas. We investigated the changes in concentration of male specific coliphage (MSC) and NoV under heat treatment of the naturally contaminated oyster, Crassostrea gigas. After heat treatment for 5 min in $85^{\circ}C$, no viable MSC was detected. The concentrations of GI and GII NoV decreased by 1.65 log and 2.25 log, respectively, following heat treatment for 5 min at $100^{\circ}C$. Moreover, both GI and GII NoV were completely deactivated by heat treatment for 10 min at $100^{\circ}C$. Therefore, in order to reduce the risk of norovirus infection from contaminated oysters, immersion in boiling water for at least 10 min is recommended.

Reduction of waterborne microorganisms in treated domestic wastewater for reuse in agriculture: Comparison between floating media filter and sand filter

  • Semsayun, Chalanda;Chiemchaisri, Wilai;Chiemchaisri, Chart;Patchanee, Nopparat
    • Environmental Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.403-409
    • /
    • 2015
  • This study aims to investigate the use of a floating media filter (FMF) to eliminate waterborne microorganism in treated domestic wastewater for reuse in agriculture. A conventional sand filter (SF) was used concurrently to compare treated water quality. The total/fecal coliforms and somatic coliphage were employed as fecal indicators. The result showed that the FMF was fed with 3 times higher infiltration rate ($15m^3/m^2.h$) than that in the SF ($5m^3/m^2.h$), in which both filters gave similar coliform removal at 6 hours operation. The somatic coliphage elimination tended to increase with operational time for the FMF while that of the SF showed decreasing trend. When a 24 hour continuous operation was applied for the FMF, it showed better removal of somatic coliphage (78%), fecal coliforms (60%) and total coliforms (56%) than that of 6 hour operation. In conclusion, the FMF gave better performance than the SF did by producing a good quality of treated water for agriculture in terms of waterborne microorganisms including turbidity and suspended solids.

Inactivation of Escherichia coli and MS2 coliphage by Cu(II)-activated peroxomonosulfate in natural water

  • Kim, Hyung-Eun;Lee, Hye-Jin;Kim, Min Sik;Choi, Joon-Young;Lee, Changha
    • Membrane and Water Treatment
    • /
    • v.10 no.3
    • /
    • pp.231-237
    • /
    • 2019
  • Peroxymonosulfate (PMS) in combination with Cu(II) was examined to inactivate E. coli and MS2 coliphage in natural water. The combined system (i.e., the Cu(II)/PMS system) caused a synergistic inactivation of E. coli and MS2, in contrast with either Cu(II) or PMS alone. Increasing the concentration of PMS enhanced the inactivation of E. coli and MS2, but after a certain point, it decreased the efficacy of the microbial inactivation. In the Cu(II)/PMS system, adding reactive oxidant scavengers marginally affected the E. coli inactivation, but the inhibitory effects of copper-chelating agents were significant. Fluorescent assays indicated that the Cu(II)/PMS system greatly increased the level of reactive oxidants inside the E. coli cells. The sequential addition of Cu(II) and PMS inactivated more E. coli than did adding the two simultaneously; in particular, the inactivation efficacy was much higher when Cu(II) was added first. The observations from the study collectively showed that the microbial inactivation by the Cu(II)/PMS system could be attributed to the toxicity of Cu(I) as well as the intracellular oxidative stress induced by Cu(III) or radical species.

Nitrification and Removal of Pathogenic Microorganisms Indicators by an upgraded RBC (생물막공정을 이용한 질산화 및 병원성 미생물의 제거)

  • Bang, Du-Yeon;Chang, In-Soo;Kim, Jee-Hak;Watanabe, Yosimasa
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.1
    • /
    • pp.108-114
    • /
    • 1998
  • Experiments on an upgraded RBC were conducted to investigate its removal efficiencies of $NH_4-N$, coliform group and coliphage in the municipal wastewater treatment. A bench scale RBC, made of stainless mesh media with 5mm high surface protrusions, was fed with settled municipal wastewater containing 13-25mg/l of $NH_4-N$ and 40-75mg/l of TOC at the hydraulic loading of $89l/m^2.d$ and $60l/m^2.d$. It was found that the nitrification effectively occured at bulk liquid TOC concentration of less 10mg/l. The coliform group and coliphage were more than 98% and 90%, respectively.

  • PDF

Ingibition of coliphage N4 infection to escherichia coli mutant defective in mannose permease (Mannose permease가 변형된 대장균 변이주에 대한 coliphage N4 감염의 저해)

  • 김기태;유욱준
    • Korean Journal of Microbiology
    • /
    • v.25 no.3
    • /
    • pp.184-188
    • /
    • 1987
  • Evidences that the mannose permease of Escherichia coli mediates the infection of N4 in early steps, were obtained as follows. First, A mutant strain of Escherichia coli which was resistant to both wild type N4 and lambda whose genome is Charon 4A containing human genomic fragments in its EcoR I site, could not use mannose efficiently. Second, N4 could not infect pel mutant strains which lack one or all of intact components of mannose permease. However, unknown alterations in N4 made it possible for the phage to infect pel mutant of E. coli. It also turned out to be clear that the receptor of N4 was different from that of lambda.

  • PDF

Change in Concentrations of Human Norovirus and Male-Specific Coliphage under Various Temperatures, Salinities, and pH Levels in Seawater (해수 중의 수온, 염분 및 pH에 따른 노로바이러스 및 Male-Specific Coliphage 농도변화)

  • Kim, Poong Ho;Park, Yong Soo;Park, Kunbawui;Kwon, Ji Young;Yu, Hong Sik;Lee, Hee Jung;Kim, Ji Hoe;Lee, Tae Seek
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.4
    • /
    • pp.454-459
    • /
    • 2016
  • Pre- or post-harvest processing is required to mitigate the risk of norovirus infection mediated by shellfish or seafood. We investigated the environmental resistance of human norovirus (HuNoV) under various conditions of temperature, salinity, and pH in seawater. Male-specific coliphage (MSC) was as the reference virus for all tests. At 4℃, HuNoV GII4 spiked into seawater was continually detected by RT-PCR for 35 days, regardless of salinity or pH level. It maintained nearly stable concentrations, meaning HuNoV can sustain a viral population in seawater long enough to be accumulated by shellfish and other filter feeders during winter. MSC was also stable at 4℃ although viral infectivity dropped sharply after 28 days. The effects of salinity and pH on MSC were indistinct. At 25℃ the detectable period of HuNoV GII4 by RT-PCR in seawater decreased to about one-third or half of the period at 4℃. High salinity (32 psu) and alkaline pH (8.5) were also unfavorable for sustaining HuNoV abundance at 25℃ in seawater. The resistance patterns of MSC to high temperature, high salinity, and alkaline pH were more dramatic and viral infectivity decreased over time, almost in direct proportion to experimental days. MSC was undetectable after 12 days under all salinities and pH levels at 25℃.

Monitoring of norovirus and indicator microorganisms from agricultural products and environmental samples in Korea (한국에서의 농산물 및 환경시료에서 노로바이러스와 위생지표세균의 모니터링)

  • Kang, Ji Hyun;Shim, Hye Mee;Kim, Kwang Yup
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.2
    • /
    • pp.123-131
    • /
    • 2017
  • Norovirus causes frequent epidemic viral gastroenteritis in Korea. The team for the control of noroviral foodborne outbreaks (NOROTECL) executed a project to trace the cause of norovirus contamination in agricultural products and environmental samples to reduce norovirus outbreaks in Korea. Between January and November in 2015, the contaminations by norovirus and indicator microorganisms such as coliforms, Escherichia coil and male specific coliphage (MSC) were examined in 80 agricultural products, 80 soil samples, 78 human feces samples, 3 animal feces samples, 80 agricultural water samples and 80 river water samples. Semi-nested PCR and DNA sequencing revealed 18 genogroup I and 3 genogroup II noroviruses in a total of 18 samples. These noroviruses were validated by real-time (RT)-PCR analysis. For indicator microorganisms, coliform and E. coli were respectively detected in agricultural products (68, 1%), soils (88, 7%), human feces (44, 12.8%), animal feces (67, 67%), agricultural waters (74, 30%) and river waters (96, 51%). The MSC results revealed 14 positive samples.

Fast Genetic Variation among Coliphage Quasispecies Revealed by a Random Amplified Polymorphic DNA (RAPD) Analysis

  • Kwon, Oh-Sik;Lee, Jae-Yung
    • Journal of Microbiology
    • /
    • v.34 no.2
    • /
    • pp.166-171
    • /
    • 1996
  • Genetic analysis was conducted on newly isolated coliphages form soil by using a RAPD assay. From the initial result, the coliphages were turned out to be different form one another but were closely related to .psi..lambda. due to the fact that they shared the samed RAPD maker in which other T phage testings failed to show. By using the primers EC01 or EC02, a fast genetic mutation of .psi.C1 was found by producing specific RAPD markers on the phages from the first filial progeny to the second filial progeny. When we made a RAPD assay with combined primers (EC01, EC05 and EC08), the genetic mutation was again confirmed in .psi.C1. The assay detection showed mutations in other coliphages such as .psi.C2 and .psi.C3 by revealing specific RAPD bands among different progeny phages, where genetic instability of the coliphages in implied.

  • PDF