• Title/Summary/Keyword: cold-formed beams

Search Result 36, Processing Time 0.019 seconds

Stress Analysis of Cold-Formed Steel Beams Considering Local Buckling Effects (국부좌굴을 고려한 냉간성형 ㄷ 형강보의 응력해석)

  • Jeon, Jae Man;Hyun, Ja Young;Lee, Jae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.51-60
    • /
    • 2004
  • The stress analysis of cold-formed channel section steel beams under transverse load was conducted. The local buckling effect was included in the analysis using effective area concept. The proposed analytical model is capable of predicting accurate normal stress in the beam due to various behaviors including biaxial bending and warping. It was found to be appropriate for predicting stresses as well as deflection in the beam. A finite element model was developed to solve the analytical model.

Effect of angle stiffeners on the flexural strength and stiffness of cold-formed steel beams

  • Dar, M. Adil;Subramanian, N.;Rather, Amer I.;Dar, A.R.;Lim, James B.P.;Anbarasu, M.;Roy, Krishanu
    • Steel and Composite Structures
    • /
    • v.33 no.2
    • /
    • pp.225-243
    • /
    • 2019
  • Cold-formed steel (CFS) sections when used as primary load carrying members often require additional strengthening for retrofitting purposes. In some cases, it is also necessary to reduce deflections in order to satisfy serviceability requirements. The introduction of angle sections, screwed to the webs so as to act as external stiffeners, has the potential to both increase flexural strength as well as reduce deflections. This paper presents the results of ten four-point bending tests, on built-up CFS sections, both open and closed, with different stiffening arrangements. In the laboratory tests, the stiffening arrangements increased the moment capacity and stiffness of the CFS beams by up to 85% and 100% respectively. The increase in moment capacity was more evident for the open sections, while that reduction in deflection was largest for the closed sections.

Strengthening of capacity deficient RC beams - An experimental approach

  • Dar, M. Adil;Subramanian, N.;Dar, A.R.;Rather, Amer Iliyas;Atif, Mir;Syed, Sayeeda
    • Structural Engineering and Mechanics
    • /
    • v.70 no.3
    • /
    • pp.303-310
    • /
    • 2019
  • Any revision of seismic codes usually demands a higher capacity from structural members, making existing structures unsafe particularly from strength considerations. Retrofitting of capacity deficient members is very suitable for tackling such situations. This paper presents an experimental study on different retrofitting measures adopted for strengthening a series of reinforced concrete (RC) beams. Four identical RC beam specimens were casted, out of which three specimens were strengthened by different schemes (viz., bolted hot rolled flat, bolted cold-formed steel channel, and carbon fibre reinforced polymer (CFRP) laminate, respectively) on their tension face and tested under four-point monotonic loading. This study focuses on the investigation of the flexural behaviour of these retrofitted beams, observed in terms of strength and stiffness. It was concluded that all retrofitting measures improved the structural performance of these beams. However, the cost involved with each strengthening mode was proportional to the improvement in the performance achieved.

Flexural Strength of cold-formed steel built-up composite beams with rectangular compression flanges

  • Dar, M. Adil;Subramanian, N.;Dar, Dawood A.;Dar, A.R.;Anbarasu, M.;Lim, James B.P.;Mahjoubi, Soroush
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.171-188
    • /
    • 2020
  • The past research on cold-formed steel (CFS) flexural members have proved that rectangular hollow flanged sections perform better than conventional I-sections due to their higher torsional rigidity over the later ones. However, CFS members are vulnerable to local buckling, substantially due to their thin-walled features. The use of packing, such as firmly connected timber planks, to the flanges of conventional CFS lipped I-sections can drastically improve their flexural performance as well as structural efficiency. Whilst several CFS composites have been developed so far, only limited packing materials have been tried. This paper presents a series of tests carried out on different rectangular hollow compression flanged sections with innovative packing materials. Four-point flexural tests were carried out to assess the flexural capacity, failure modes and deformed shapes of the CFS composite beam specimens. The geometric imperfections were measured and reported. The North American Specifications and Indian Standard for cold-formed steel structures were used to compare the design strengths of the experimental specimen. The test results indicate clearly that CFS rectangular 'compression' flanged composite beams perform significantly better than the conventional rectangular hollow flanged CFS sections.

Bicriteria optimal design of open cross sections of cold-formed thin-walled beams

  • Ostwald, M.;Magnucki, K.;Rodak, M.
    • Steel and Composite Structures
    • /
    • v.7 no.1
    • /
    • pp.53-70
    • /
    • 2007
  • This paper presents a analysis of the problem of optimal design of the beams with two I-type cross section shapes. These types of beams are simply supported and subject to pure bending. The strength and stability conditions were formulated and analytically solved in the form of mathematical equations. Both global and selected types of local stability forms were taken into account. The optimization problem was defined as bicriteria. The cross section area of the beam is the first objective function, while the deflection of the beam is the second. The geometric parameters of cross section were selected as the design variables. The set of constraints includes global and local stability conditions, the strength condition, and technological and constructional requirements in the form of geometric relations. The optimization problem was formulated and solved with the help of the Pareto concept of optimality. During the numerical calculations a set of optimal compromise solutions was generated. The numerical procedures include discrete and continuous sets of the design variables. Results of numerical analysis are presented in the form of tables, cross section outlines and diagrams. Results are discussed at the end of the work. These results may be useful for designers in optimal designing of thin-walled beams, increasing information required in the decision-making procedure.

Structural efficiency of various strengthening schemes for cold-formed steel beams: Effect of global imperfections

  • Dar, M. Adil;Subramanian, N.;Dar, A.R.;Majid, Muheeb;Haseeb, Mohd;Tahoor, Mugees
    • Steel and Composite Structures
    • /
    • v.30 no.4
    • /
    • pp.393-403
    • /
    • 2019
  • Cold-formed steel (CFS) has a great potential to meet the global challenge of fast-track and durable construction. CFS members undergo large buckling instabilities due to their small wall thickness. CFS beams with corrugated webs have shown great resistance towards web buckling under flexure, when compared to the conventional I-sections. However, the magnitude of global imperfections significantly affects the performance of CFS members. This paper presents the first attempt made to experimentally study the effect of global imperfections on the structural efficiency of various strengthening schemes implemented in CFS beams with corrugated webs. Different strengthening schemes were adopted for two types of beams, one with large global imperfections and the other with small imperfections. Strength and stiffness characteristics of the beams were used to evaluate the structural efficiency of the various strengthening schemes adopted. Six tests were performed with simply supported end conditions, under four-point loading conditions. The load vs. mid-span displacement response, failure loads and modes of failure of the test specimens were investigated. The test results would compensate the lack of experimental data in this area of research and would help in developing numerical models for extensive studies for the development of necessary guidelines on the same. Strengthening schemes assisted in enhancing the member performance significantly, both in terms of strength and stiffness. Hence, providing an economic and time saving solution to such practical structural engineering problems.

Design of web-stiffened lipped channel beams experiencing distortional global interaction by direct strength method

  • Hashmi S.S. Ahmed;G. Khushbu;M. Anbarasu;Ather Khan
    • Structural Engineering and Mechanics
    • /
    • v.90 no.2
    • /
    • pp.117-125
    • /
    • 2024
  • This article presents the behaviour and design of cold-formed steel (CFS) web-stiffened lipped channel beams that primarily fail owing to the buckling interaction of distortional and global buckling modes. The incorporation of an intermediate stiffener in the web of the lipped channel improved the buckling performance leads to distortional buckling at intermediate length beams. The prediction of the strength of members that fail in individual buckling modes can be easily determined using the current DSM equations. However, it is difficult to estimate the strength of members undergoing buckling interactions. Special attention is required to predict the strength of the members undergoing strong buckling interactions. In the present study, the geometric dimensions of the web stiffened lipped channel beam sections were chosen such that they have almost equal distortional and global buckling stresses to have strong interactions. A validated numerical model was used to perform a parametric study and obtain design strength data for CFS web-stiffened lipped channel beams. Based on the obtained numerical data, an assessment of the current DSM equations and the equations proposed in the literature (for lipped channel CFS sections) is performed. Suitable modifications were also proposed in this work, which resulted in a higher level of design accuracy to predict the flexural strength of CFS web stiffened lipped channel beams undergoing distortional and global mode interaction. Furthermore, reliability analysis was performed to confirm the reliability of the proposed modification.

Structural assessment of cold-formed composite structures

  • de Andrade, S.A.L.;da S. Vellasco, P.C.G.;Mergulhao, A.J.R.
    • Steel and Composite Structures
    • /
    • v.2 no.5
    • /
    • pp.397-410
    • /
    • 2002
  • The main aim of the present paper is to present the results of a full-scale experimental investigation to study the structural behaviour of composite steel beams. The composite beam was made of cold-formed steel section shapes filled with reinforced concrete. First a comprehensive description of the experimental results in terms of: deflections, deformations, slippage and stress levels on critical steps of the load path is presented. The experimental results were then compared to theoretical values obtained by the use of an analytical model based on ultimate limit state stress blocks. Finally, a practical application of the use of this structural solution is depicted.

Behavior of Concrete/Cold Formed Steel Composite Beams: Experimental Development of a Novel Structural System

  • Wehbe, Nadim;Bahmani, Pouria;Wehbe, Alexander
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.1
    • /
    • pp.51-59
    • /
    • 2013
  • The use of light-gauge steel framing in low-rise commercial and industrial building construction has experienced a significant increase in recent years. In such construction, the wall framing is an assembly of cold-formed steel (CFS) studs held between top and bottom CFS tracks. Current construction methods utilize heavy hot-rolled steel sections, such as steel angles or hollow structural section tubes, to transfer the load from the end seats of the floor joist and/or from the load-bearing wall studs of the stories above to the supporting load-bearing wall below. The use of hot rolled steel elements results in significant increase in construction cost and time. Such heavy steel elements would be unnecessary if the concrete slab thickening on top of the CFS wall can be made to act compositely with the CFS track. Composite action can be achieved by attaching stand-off screws to the track and encapsulating the screw shank in the deck concrete. A series of experimental studies were performed on full-scale test specimens representing concrete/CFS flexural elements under gravity loads. The studies were designed to investigate the structural performance of concrete/CFS simple beams and concrete/CFS continuous headers. The results indicate that concrete/CFS composite flexural elements are feasible and their structural behavior can be modeled with reasonable accuracy.

Numerical study on the rotation capacity of CFRP strengthened cold formed steel beams

  • Serror, Mohammed H.;Soliman, Essam G.;Hassan, Ahmed F.
    • Steel and Composite Structures
    • /
    • v.23 no.4
    • /
    • pp.385-397
    • /
    • 2017
  • Currently, CFRP (Carbon Fiber Reinforced Polymer) plate bonding is used quite extensively as a strengthening method. In this technique, a composite CFRP plate or sheet of relatively small thickness is bonded with an adhesion material to steel or concrete structure in order to improve its structural behavior and strength. The sheets or plates do not require much space and give a composite action between the adherents. In this study, the rotation capacity of CFRP-strengthened cold-formed steel (CFS) beams has been evaluated through numerical investigation. Studies on different structural levels have been performed. At the beam level, C-section has been adopted with different values of profile thickness, web height, and flange width. At the connection level, a web bolted moment resistant type of connection using through plate has been adopted. In web-bolted connections without CFRP strengthening, premature web buckling results in early loss of strength. Hence, CFRP sheets and plates with different mechanical properties and geometric configurations have been examined to delay web and flange buckling and to produce relatively high moment strength and rotation capacity. The numerical results reveal that CFRP strengthening may increase strength, initial stiffness, and rotation capacity when compared with the case without strengthening.