• Title/Summary/Keyword: cold water mass

Search Result 198, Processing Time 0.025 seconds

Hydrography and Currents in the Southeastern Sea of Korea, October 1982 (한국 동남해역의 해양현상에 관한 연구)

  • Kim, Ku;Min, Byeong-Eon
    • Journal of the Korean Institute of Navigation
    • /
    • v.8 no.1
    • /
    • pp.49-70
    • /
    • 1984
  • Spatial and temporal variations of hydrography and currents are investigated in the Southeastern Sea of Korea during October 1982. The distribution of the water mass of high salinity (>34.40${\textperthousand}$) and low dissolved oxygen concentration (<5.0ml/l) indicates that the Tsushima current flows northward as it passes the Western Channel of the Korea Strait. The cold water (<$6.0^{\circ}c$) with low salinity (<$34.20{\textperthousand}$) and high dissolved oxygen concentration (>6.0ml/l) reaches the bottom of the western channel of the Korea Strait after flowing southward leaning against the slope rather than following the deepest part of the Channel. Repeated sections in the Korea Strait show a remarkable change of hydrographic structure over a period of 4 days ; both warn and cold waters are intensified, particularly in the eastern part of the strait toward the Tsushima Island.

  • PDF

MODELING OF A BUOYANCY-DRIVEN FLOW EXPERIMENT IN PRESSURIZED WATER REACTORS USING CFD-METHODS

  • Hohne, Thomas;Kliem, Soren
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.327-336
    • /
    • 2007
  • The influence of density differences on the mixing of the primary loop inventory and the Emergency Core Cooling (ECC) water in the downcomer of a Pressurised Water Reactor (PWR) was analyzed at the ROssendorf COolant Mixing (ROCOM) test facility. ROCOM is a 1:5 scaled model of a German PWR, and has been designed for coolant mixing studies. It is equipped with advanced instrumentation, which delivers high-resolution information for temperature or boron concentration fields. This paper presents a ROCOM experiment in which water with higher density was injected into a cold leg of the reactor model. Wire-mesh sensors measuring the tracer concentration were installed in the cold leg and upper and lower part of the downcomer. The experiment was run with 5% of the design flow rate in one loop and 10% density difference between the ECC and loop water especially for the validation of the Computational Fluid Dynamics (CFD) software ANSYS CFX. A mesh with two million control volumes was used for the calculations. The effects of turbulence on the mean flow were modelled with a Reynolds stress turbulence model. The results of the experiment and of the numerical calculations show that mixing is dominated by buoyancy effects: At higher mass flow rates (close to nominal conditions) the injected slug propagates in the circumferential direction around the core barrel. Buoyancy effects reduce this circumferential propagation. Therefore, density effects play an important role during natural convection with ECC injection in PWRs. ANSYS CFX was able to predict the observed flow patterns and mixing phenomena quite well.

Movement of Cold Water Mass in the Northern East China Sea in Summer (하계 동중국해 북부 해역에서 저층 냉수괴의 거동)

  • Jang, Sung-Tae;Lee, Jae-Hak;Kim, Cheol-Ho;Jang, Chan-Joo;Jang, Young-Suk
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.1
    • /
    • pp.1-13
    • /
    • 2011
  • The Yellow Sea Cold Water (YSCW) is formed by cold and dry wind in the previous winter, and is known to spread southward along the central trough of the Yellow Sea in summer. Water characteristics of the YSCW and its movement in the northern East China Sea (ECS) are investigated by analyzing CTD (conductivity-Temperature-Depth) data collected from summertime hydrographic surveys between 2003 and 2009. By water mass analysis, we newly define the North Western Cold Water (NWCW) as a cold water mass observed in the study area. It is characterized by temperature below $13.2^{\circ}C$, salinity of 32.6~33.7 psu, and density (${\sigma}_t$) of 24.7~25.5. The NWCW appears to flow southward at about a speed less than 2 cm/s according to the geostrophic calculation. The newly defined NWCW shows an interannual variation in the range of temperature and occupied area, which is in close relation with the sea surface temperature (SST) over the Yellow Sea and the East China Sea in the previous winter season. The winter SST is determined by winter air temperature, which shows a high correlation with the winter-mean Arctic Oscillation (AO) index. The negative winter-mean AO causes the low winter SST over the Yellow Sea and the East China Sea, resulting in the summertime expansion and lower temperature of the NWCW in the study area. This study shows a dynamic relation among the winter-mean AO index, SST, and NWCW, which helps to predict the movement of NWCW in the northern ECS in summer.

The characteristics and structures of thermal front and warm eddy observed in the southeastern part of the east sea in 1995 (95년 한국동해에서의 수온전선과 와동류의 구조 및 특성조사)

  • Lim, Keun-Sik;Wang, Kap-Sik;Yun, Jae-Yul;Kim, Ki-Cheol;Kim, Young-Gyu;Kim, Kuh
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.120-135
    • /
    • 1996
  • The characteristics and fluctuations of structures and spatial distributions of thermal fronts and warm eddy in the Southeastern part of the East sea are discussed based on the data collected by the Naval Academy, Korea during Feb. 6-9, May 9-19 and Oct. 12-18, 1995. The thermal fronts existed very often at the sea off the Pohang-Ulsan, The generation of the thermal front is related with the development of the North Korea Cold Current. The warm eddy is located in the central part of the Ulleung basin where the local depth exceeds 1500m. This warm eddy is a major contributor to mass transport in the northern part of the East Sea. It is evident that knowledge of warm eddy is important in understanding the circulation in the western part of the East Sea.

  • PDF

A Fundamental Study on the Control of Hydration Heat of Mass Concrete Using Setting Time Difference (응결시간차를 활용한 매스콘크리트의 수화열 조정에 관한 기초적 연구)

  • 배정렬;윤치환;김기철;한민철;오선교;한천구
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.05a
    • /
    • pp.41-45
    • /
    • 2002
  • Placing lift is applied to place mass concrete in order to reduce thermal cracks by hydration heat. But they results in cold joint between placing lifts, which bring about the loss of strength, water tightness and undesirable appearance. Therefore, in this paper, mechanical and hydration heat of mass concrete using super retarding agent developed through previous study are investigated in order to reduce the hydration heat and place it without place lift. According to test results, placing lifts combined with normal concrete and concrete containing super retarding agent have positive effects on reducing hydration heat. Especially, the crack index by thermal stress of the concrete containing super retarding agent less than a quarter, compared to that of plain concrete without placing lifts, and less than a half, compared to that of plain concrete with placing lifts.

  • PDF

Numerical Simulation of Temperature and Stress Distribution in Mass Concrete with pipe cooling and Comparision with Experimental Measurements (매스콘크리트 시험체의 수화열 해석 및 실험)

  • 주영춘;김은겸;신치범;조규영;박용남
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.269-274
    • /
    • 1999
  • Various method have been developed for mass concrete structures to reduce the temperature increase of concrete mass due to exothermic hydration reactions of concrete compounds and thereby to avoid thermal cracks. One of the methods widely acceptable for practical use is pipe cooling, in which cooling is achieved by circulating cold water through thin-wall steel pipes embedded in the concrete. A numerical simulation was performed to investigate the effectiveness of pipe cooling. A three-dimensional finite element method was proposed to analyse the transient three-dimensional heat transfer between the hardening concrete and the cooling water in pipe and to predict the stress development during the curing process. The effects of the cement type and content and the environment were taken into consideration by the heat generation rate and the boundary conditions, respectively. In order to test the validity of the numerical simulation, a model RC structure with pipe cooling was constructed and the time-dependent temperature and stress distributions within the structure as well as the variation of the temperature of cooling water along the pipe were measured. The results of the simulation agreed well the experimental measurements. The results of this study have important implications for the optimal design of the cooling pipe layout and for the estimation of thermal stress in order to eliminate thermal cracks.

  • PDF

Flow Condensation Heat Transfer Coefficients of Pure Refrigerants (순수냉매의 흐름응축 열전달계수)

  • 김신종;송길홍;정동수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.2
    • /
    • pp.175-183
    • /
    • 2002
  • Flow Condensation heat transfer coefficients (HTCs) of Rl2, R22, R32, Rl23, Rl25, R134a, R142b were measured experimentally on a horizontal plain tube. The experi- mental apparatus was composed of three main parts; a refrigerant loop, a water loop and a water-glycol loop. The test section in a refrigerant loop was made of a copper tube of 8.8 mm inner diameter and 1000 mm length respectively. The refrigerant was cooled by passing cold water through an annulus surrounding the test section. All tests were performed at a filed refrigerant saturation temperature of 4$0^{\circ}C$ with mass fluxes of 100, 200, 300 kg/$m^2$s. The experimental result showed that flow condensation HTCs increase as the quality, mass flux, and latent heat of condensation increase. At the same mass flux, the HTCs of R32 and R142b were higher than those of R22 by 35~45% and 7~14% respectively while HTCs of R134a and Rl23 were similar to those of R22. On the other hand, HTCs of Rl25 and Rl2 were lower than those of R22 by 28 ~30% and 15 ~25% respectively Finally, a new correlation for flow condensation HTCs was developed by modifying Dobson and Chato's correlation with the latent heat of condensation considered. The correlaton showed an average deviation of 13.1% for all pure fluids data indicating an excellent agreement.

Water Masses and Salinity in the Eastern Yellow Sea from Winter to Spring

  • Park, Moon-Jin;Oh, Hee-Jin
    • Ocean and Polar Research
    • /
    • v.26 no.1
    • /
    • pp.65-75
    • /
    • 2004
  • In order to understand the water masses and their distribution in the eastern Yellow Sea from winter to spring, a cluster analysis was applied to the temperature and salinity data of Korea Oceanographic Data Center from 1970 to 1990. From December to April, Yellow Sea Cold Water (YSCW) dominates the eastern Yellow Sea, whereas Eastern Yellow Sea Mixed Water (MW) and Yellow Sea Warm Water (YSWW) are found in the southern part of the eastern Yellow Sea. MW appears at the frontal region around $34^{\circ}N$ between YSCW in the north and YSWW in the south. On the other hand, Tshushima Warm Water (TWW) is found around Jeju Island and the South Sea of Korea. These water masses are relatively well-mixed throughout the water column due to the winter monsoon. However, the water column begins to be stratified in spring due to increased solar heating, the diminishing winds and fresh water discharge, and the water masses in June may be separated into surface, intermediate and bottom layers of the water column. YSWW advances northwestward from December to February and retreats southeastward from February to April. This suggests a periodic movement of water masses in the southern part of the eastern Yellow Sea from winter to spring. YSWW may continue to move eastward with the prevailing eastward current to the South Sea from April to June. Also, the front relaxes in June, but the mixed water advances to the north, increasing salinity. The salinity is also higher in the nearshore region than offshore. This indicates an influx of oceanic water to the north in the nearshore region of the eastern Yellow Sea in spring in the form of mixed water.

Characteristics of Cochlodinium polykrikoides Bloom in Southeast Coastal Waters of Korea, 2008 (2008년 남해동부해역의 Cochlodinium polykrikoides 적조발생 특성)

  • Lim, Weol-Ae;Lee, Young-Sik;Park, Jong-Gyu
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.3
    • /
    • pp.155-162
    • /
    • 2009
  • To characterize the initiation, propagation and termination of Cochlodinium polykrikoides blooms in the southeast coastal waters of Korea, 2008, we analyzed the data set of phytoplankton composition, physical and chemical water properties, and meterological data. C. polykrikoides bloom in 2008 were long lasting and restricted to the coastal area with a low density. Our results indicate that C. polykrikoides blooms were affected by the atypical cold waters occurring in east-south coastal water in the early July. The cold water masses probably protected the free living cells of C. polykrikoides from entering into the coastal area from offshore waters as a pelagic seed population. The low density blooms of small scale established possibly by the germination of C. polykrikoides cyst in shallow coastal bottom could have not spread over because of the weak wind and low nutrient concentrations caused by severe drought in July and September.

Water Mass Distribution and Seasonal Circulation Northwest of Cheju Island in 1994

  • PANG Ig-Chan;RHO Hong-Kil;LEE Jae-Hak;LIE Heung-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.6
    • /
    • pp.862-875
    • /
    • 1996
  • The CTD data observed in the sea northwest of Cheju Island have been analyzed to figure out the seasonal circulation around Cheju Island. Warm and saline waters flow into the Yellow Sea through the middle region of the Yellow Sea in winter and along the west coast of Korean Peninsula in summer. On the other hand, cold and less saline waters flow out of the Yellow Sea through the middle region in summer and along the west coast of Korean Peninsula in winter. These flows make the seasonal circulation around Cheju Island. As dynamics, the monsoon wind and the variation of Kuroshio transport have been suggested. Comparing the observational result, the circulation driven by the variation of Kuroshio transport is strengthened by monsoon winds in the numerical model.

  • PDF