• Title/Summary/Keyword: cold tolerance mechanism

Search Result 21, Processing Time 0.018 seconds

Molecular Analysis of Freeze-Tolerance Enhanced by Treatment of Trinexapac-Ethyl in Kentucky Bluegrass

  • Hwang, Cheol Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.2
    • /
    • pp.176-179
    • /
    • 1999
  • Trinexapac-ethyl[ 4-(cyclopropyl- $\alpha$ -hydroxy-methylene)-3,5-dioxocyclohexane carboxylic acid ethylester] is a growth-retardant for plants by inhibiting a key step in biosynthesis of GA. A treatment of trinexapacethyl generally induces a reduction in vegetative growth and also inhibits heading. In addition, the trinexapacethyl was known to enhance the freeze-tolerance in annual bluegrass, however, the mechanism is not known yet. One possible reason for the enhanced freeze-tolerance may be the antifreeze protein known to be accumulated in intercellular space of the leaf during cold acclimation. In order to see the possible in-duction of the synthesis of antifreeze proteins by trinexacpacethyl, the apoplastic proteins extracted from Kentucky bluegrass treated with trinexapacethyl were analyzed by SDS-PAGE and the presence of the antifreeze protein was observed. In addition, western analysis showed the identity of the protein induced by both a cold acclimation and a trinexapacethyl treatment. It appears that an enhanced freeze-tolerance of the turf grass by trinexapacethyl is due to the synthesis and/or accumulation of the antifreeze protein similar to the enhanced freeze tolerance induced by cold acclimation.

  • PDF

Biochemical Changes in Brassica Seedlings Due to Cold Acclimation Treatment (Brassica속 작물 유묘에서 장기 저온 순화처리에 따른 생화학적 변화)

  • Park, Woo-Churl;Oh, Yun-Jin;Nam, Min-Hee
    • Applied Biological Chemistry
    • /
    • v.38 no.3
    • /
    • pp.212-217
    • /
    • 1995
  • This study was aimed for determining the biochemical mechanism of cold tolerance in crops and for searching the biochemical genetic marker related with cold tolerance by the analysis of isozyme pattern. We investigated various biochemical changes induced by the long-term cold acclimation in cold sensitive rape (B. napus) and in cold tolerant 'Sandongchae'(B. campestris) seedlings. The cold shock after long-term cold acclimation to B. napus and B. campestris greatly increased the activities of peroxidase 157% and 50% in root fraction and, 201% and 205% in hypocotyl, respectively. Simultaneously, the activity of superoxide dismutase was largely increased in hypocotyl fraction, too. Protein contents of hypocotyl fractions in B. napus and B. campestris were also increased by 11.4% and 57.8%, respectively. The band of pl 6.4 among peroxidase isozymes newly biosynthesized during long-term cold acclimation was emerged in the hypocotyl fraction of cold tolerant B. campestris as well as in the root of both species. From above and previous results, we presented a model of interconversions of molecular oxygen species due to the cold injury and biochemically inferred the mechanism of cold tolerance in crops.

  • PDF

Expressing the Tyrosine Phosphatase (CaTPP1) Gene from Capsicum annuum in Tobacco Enhances Cold and Drought Tolerances

  • Hwang, Eul-Won;Park, Soo-Chul;Jeong, Mi-Jeong;Byun, Myung-Ok;Kwon, Hawk-Bin
    • Journal of Applied Biological Chemistry
    • /
    • v.51 no.2
    • /
    • pp.50-56
    • /
    • 2008
  • As one way to approach to cold defense mechanism in plants, we previously identified the gene for protein-tyrosine phosphatase (CaTPP1) from hot pepper (Capsicum annuum) using cDNA microarray analysis coupled with Northern blot analysis. We showed that the CaTPP1 gene was strongly induced by cold, drought, salt and ABA stresses. The CaTPP1 gene was engineered under control of CaMV 35S promoter for constitutive expression in transgenic tobacco plants by Agrobacterium-mediated transformation. The resulting CaTPP1 transgenic tobacco plants showed significantly increased cold stress resistance. It also appeared that some of the transgenic tobacco plants showed increased drought tolerance. The CaTPP1 transgenic plants showed no visible phenotypic alteration compared to wild type plants. These results showed the involvement of protein tyrosine phosphatase in tolerance of abiotic stresses including cold and drought stress.

Photochemical Response in 0-Year-Old and 1-Year-Old Needles of Picea glehnii during Cold Acclimation and Low Temperature

  • Bae, Jeong-Jin;Hara, Toshihiko;Choo, Yeon-Sik
    • Journal of Ecology and Environment
    • /
    • v.31 no.4
    • /
    • pp.317-325
    • /
    • 2008
  • P. glehnii, an evergreen conifer found in northern areas, is known as a cold-resistant species. In this experiment, we measured the water content, PSⅡ efficiency, chlorophyll fluorescence, pigments of the xanthophyll-cycle and activity of enzymes of the ascorbate-glutathione cycle during cold acclimation and at subsequent low-temperature conditions to examine the importance of acclimation to cold tolerance. P. glehnii showed a decrease in PSⅡ efficiency (especially in Fv) during cold acclimation and at subsequent low temperatures. However, cold-acclimated needles showed higher PSⅡ efficiency at low temperatures than nonacclimated needles. In addition, 0-YON (first-year needles) showed an increase in $\beta$-carotene and lutein, while 1-YON (one-year-old needles) immediately developed an antioxidant mechanism in the ascorbate-gluthathione cycle as soon as they were exposed to low temperature and both 0-YON and 1-YON showed increased zeaxanthin and de-epoxidation ratios at continuous low temperature. Based on our results, we suggest that P. glehnii maintain PSⅡ efficiency at low temperature by effectively protecting the photosynthetic apparatus from photo-damage by rapid induction of an antioxidant mechanism in 1-YON and dissipation of excess energy by $\beta$-carotene and lutein in 0-YON.

Cold-Stress Response of Probiotic Lactobacillus plantarum K25 by iTRAQ Proteomic Analysis

  • Liu, Shaoli;Ma, Yimiao;Zheng, Yi;Zhao, Wen;Zhao, Xiao;Luo, Tianqi;Zhang, Jian;Yang, Zhennai
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.187-195
    • /
    • 2020
  • To understand the molecular mechanism involved in the survivability of cold-tolerant lactic acid bacteria was of great significance in food processing, since these bacteria play a key role in a variety of low-temperature fermented foods. In this study, the cold-stress response of probiotic Lactobacillus plantarum K25 isolated from Tibetan kefir grains was analyzed by iTRAQ proteomic method. By comparing differentially expressed (DE) protein profiles of the strain incubated at 10℃ and 37℃, 506 DE proteins were identified. The DE proteins involved in carbohydrate, amino acid and fatty acid biosynthesis and metabolism were significantly down-regulated, leading to a specific energy conservation survival mode. The DE proteins related to DNA repair, transcription and translation were up-regulated, implicating change of gene expression and more protein biosynthesis needed in response to cold stress. In addition, two-component system, quorum sensing and ABC (ATP-binding cassette) transporters also participated in cell cold-adaptation process. These findings provide novel insight into the cold-resistance mechanism in L. plantarum with potential application in low temperature fermented or preserved foods.

Mechanisms of Chilling Tolerance in Relation to Antioxidative Enzymes in Rice

  • Kuk, Yong-In;Shin, Ji-San;Whang, Tay-Eak;Guh, Ja-Ock
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.5
    • /
    • pp.341-351
    • /
    • 2002
  • In order to examine the mechanistic basis for differential sensitivities to chilling and subsequent recovery between two rice (Oryza sativa L.) cutivars, a chilling-tolerant japonica type (Ilpumbyeo) and a chilling-susceptible indica type (Taebaekbyeo), changes of physiological responses and antioxidant enzymes were investigated. Both cultivars at 3 leaf stage were exposed at a low temperature of $5^{\circ}C$ for 3 days and subsequently recovered in a growth chamber at a $25^{\circ}C$ for 5 days with 250 mmol $m^{-2}$ $s^{-1}$. Physiological parameters such as leaf fresh weight, relative water content, cellular leakage, lipid peroxidation, and chlorophyll a fluorescence showed that the chilling tolerant cultivar had a high tolerance during chilling. However, the chilling-susceptible cultivar revealed severe chilling damages. The chilling-tolerant cultivar was also faster in recovery than the chilling-susceptible cultivar in all parameters examined. We analyzed the activity and isozyme profiles of four antioxidant enzymes which are: superoxide dismutase (SOD), caltalase (CAT), ascorbate peroxidase (APX), and glutation reductase (GR). We observed that chilling-tolerance was due to a result of the induced or higher antioxidant enzyme system, CAT and APX in leaves and SOD, CAT, APX, and GR in roots. Especially, we observed the most significant differences between the chilling-tolerant cultivar and -susceptible cultivar in CAT and APX activity. Also in isozyme profiles, CAT and APX band intensity in the chilling-tolerant cultivar was distinctively higher than in the chilling-susceptible cultivars during chilling and recovery. Thus, the cold stability of CAT and APX are expected to contribute to a tolerance mechanism of chilling in rice plants. In addition, the antioxidative enzymes activity in roots may be more important than in that of leaves to protect chilling damage on rice plants.

Changes of Cold Tolerance and it Mechanisms at Young Microspore Stage caused by Different Pre-growing Conditions in Rice (벼 수잉기내냉성의 전역조건에 따른 변동과 기구)

  • 이선용;박석홍
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.5
    • /
    • pp.394-406
    • /
    • 1991
  • It was proved that cold tolerance of rice plants at the young microspore stage was affected by water temperature and nitrogen application from the spikelet differentiation stage to the young microspore stage, and this mechanism could be explained in the point of view of pollen developmental physiology. The cold tolerance of rice plants at the young microspore stage was severely affected by water temperature (Previous water temperature) and nitrogen application(Previous nitrogen application) from the spikelet differentiation stage to the spikelet differentiation stage. Although the duration is only 10 days or so from the spikelet differentiation stage to the young microspore stage, these days are very important period to confirm the cold tolerance of rice plants at the young microspore stage. The higher previous water temperature up to $25^{\circ}C$ and the deeper previous water depth up to 10cm caused the more cold tolerance of rice plants. Water irrigation of 10cm before the cretical stage showed lower cool injury than that of water irrigation of 20cm during the critical stage. The preventive effect of cool injury by combined treatment of the deep water irrigation before and during the critical stage was not additive but synergistic. The cold tolerance of rice plants grown in previous heavy nitrogen level was rapidly decreased when nitrogen content of leaf blade at the young microspore stage was excessive over the critical nitrogen level. Nitrogen content of leaf blade at the changing point of cold tolerance was estimated as about 3.5% for Japonica cultivars and about 2.5% for Indica x Japonica cultuvars. It is considered that these critical nitrogen contents of leaf blade can be used as a index of the safe critical nitrogen level for the preventive practices to cool injury. It was summarized that increase of engorged pollens per anther by high previous water temperature resulted from the increase of number of differentiated microspores per anther, otherwise, the increase of engorged pollens by the decrease of previous nitrogen level was caused by the decrease of the number of aborted microspores per anther.

  • PDF

Proteome analysis of storage roots of two sweet potato cultivars with contrasting low temperature tolerance during storage (저온 저장 감수성 및 저항성 고구마 품종에서 저온 반응성 단백질체 연구)

  • Kim, Yun-Hee;Ji, Chang Yoon;Kim, Ho Soo;Chung, Jung-Sung;Choi, Sung Hwan;Kwak, Sang-Soo;Lee, Jeung Joo
    • Journal of Plant Biotechnology
    • /
    • v.49 no.2
    • /
    • pp.118-123
    • /
    • 2022
  • To obtain information on the molecular mechanism underlying the low temperature tolerance of sweet potato [Ipomoea batatas (L.) Lam], the proteome expressed in the sweet potato cultivar Xushu 15-1 with high cold storage tolerance and in the cultivar Xushu 15-4 with low cold storage tolerance was analyzed using 2-D and MALDI-TOF/TOF analyses. Compared with the control (without cold treatment), four protein spots were newly expressed in Xushu 15-1. The expression level of one protein spot was higher in Xushu 15-4 than in Xushu 15-1. Spot 2, which was newly expressed in Xushu 15-1, was identified as sporamin. Assessment of the change in protein expression levels over 8 weeks in the storage roots of the two cultivars treated at 4℃ revealed no significant difference in the expression levels in Xushu 15-1 over time. However, in Xushu 15-4, the expression level of one protein spot increased, while those of four spots decreased. Of the proteins with reduced expression levels, spots 7 and 8 were identified as actin and spots 9 and 10 were identified as fructokinase-like proteins. The present results are expected to enhance the understanding of the complex mechanism underlying the low temperature tolerance of sweet potatoes during storage and can be used to identify candidate genes for the development of new varieties of sweet potatoes with improved low temperature tolerance during cold storage in the future.

Cold Tolerance of Native and Introduced Evergreen Rhododendron Species According to Morphological and Physiological Changes (국내 자생종 및 도입종 만병초의 내한성과 관련된 형태 및 생리적변화)

  • Lee, Byung-Chul;Kim, Seong-Min;Cheng, Hyo-Cheng;Shim, Ie-Sung
    • Horticultural Science & Technology
    • /
    • v.29 no.6
    • /
    • pp.561-567
    • /
    • 2011
  • Cold tolerance of the native Rhododendron species which are on the verge of extinction in Korean nature were compared with the introduced species and its mechanism were studied physiologically with the investigation of the leaf angle, leaf curling, and photosynthetic activity. The degree of cold tolerance measured with the leaf burning after winter season was higher in the native species, Rhododendron brachycarpum and Rhododendron brachycarpum var. roseum than all the introduced species. 'Nova Zembla', an introduced species, showed high sensitivity to the low temperature. Changes in leaf angle by the low temperature were bigger in 2 native species and 'Parker's Pink' than the other introduced species and small comparatively in 'Nova Zembla' and 'Cunningham's White' cultivar. Leaf curling also occurred strongly in 2 native species by the low temperature. While, it was comparatively little and mild in the other introduced species. Therefore these results suggested that the leaf movement such as leaf angle change and curling adapted to the low temperature is positively related to the cold tolerance of 2 native species. By the way, such relationship is not explainable in the cold-sensitive 'Parker's Pink' cultivar showing comparatively stronger leaf movement. Photosynthetic activity measured before the winter season was high in the cold-tolerant R. brachycarpum and its recovery after winter season was faster in the 2 native species and the introduced 'Cynosure' cultivar than the other introduced species. They were the lowest in the most cold-sensitive 'Nova Zembla'. This phenomena occurred similarly even in the stomatal conductivity, suggesting that the movement of water from the roots to the leaves is better and then the leaf burning after winter season become small in the cold-tolerant species. The recovery of photosynthetic activity and stomatal conductivity was comparatively slower in the cold-sensitive 'Parker's Pink'. From the above results, leaf behavior adapted to the low temperature during the winter season and water movement to the leaves are related collectively to the cold tolerance represented as the leaf burning in the Rhododendron species is suggested.

Biochemical Changes in Brassica Seedlings Due to Cold Treatment (Brassica속 작물 유묘에서 저온처리에 따른 생화학적 변화)

  • Park, Woo-Churl;Park, Kyeong-Bae;Nam, Min-Hee
    • Applied Biological Chemistry
    • /
    • v.38 no.3
    • /
    • pp.207-211
    • /
    • 1995
  • In order to determine the mechanism of cold tolerance in crops, changes in biochemical factors related with the biological reduction of molecular oxygen upon cold shock treatment were analyzed at an early stage of Brassica germination. As the cold shocked seedlings were recovered under the normal growth condition for 24 hours, the peroxidase activities in cold sensitive rape(B. napus) and cold tolerant 'Sandongchae'(B. campestris) were considerably increased by 33% and 87% in root fraction and, 84% and 206% in hypocotyl, respectively. The content of superoxide($H_2O_2$) in hypocotyl fraction was dramatically accumulated until 8 hours after recovery and then gradually decreased. The extent of superoxide accumulation was severer in B. napus than B. campestris. At 24 hours after cold shock, $H_2O_2$ content was decreased to the nearly control level in B. campestris but still remained by 38%, in E. napus. Even though $H_2O_2$ content in hypocotyl fraction was decreased only 2% in B. napus during cold shock, while in B. campestris it was severely decreased about 15%. On the other hand, the cold shock at 3 days after Uniconazole treatment was more effective in increase of peroxidase activity than each separate treatment.

  • PDF