• Title/Summary/Keyword: cold Start

Search Result 324, Processing Time 0.026 seconds

COMPARISON OF HYDROCARBON REDUCTION IN A Sl ENGINE BETWEEN CONTINUOUS AND SYNCHRONIZED SECONDARY AIR INJECTIONS

  • Chung, S.-H.;Sim, H.-S.
    • International Journal of Automotive Technology
    • /
    • v.3 no.1
    • /
    • pp.41-46
    • /
    • 2002
  • Effect of secondary air injection (SAI) on hydrocarbon reduction has been investigated in a single cylinder Sl engine operating at cold-steady/cold-start conditions. The hydrocarbon emission and exhaust gas temperature with and without catalytic converter were compared with continuous and synchronized SAIs, which injected secondary air intermittently into exhaust port. Effects of SAI location, SAI pressure, SAI timing, and location of catalytic converter have been investigated and the results are compared for both SAls with base condition. At cold-steady condition, the rate of HC reduction increased as the location of SAI was closer to the exhaust valve for both synchronized and continuous SAls. The emission of HC decreased with increasing exhaust-A/F when it was rich, and was relatively insensitive when it was lean. The timing of SAI in synchronized SAI had significant effect on HC reduction and exhaust gas temperature and the synchronized SAI was found to be more effective in HC reduction and exhaust gas temperature compared to the continuous SAI . At cold-start condition, when the catalytic converter was located 20 cm downstream from the exhaust port exit, the catalytic converter warm-up period for both SAls decreased by about 50%, and the accumulated hydrocarbon emission during the first 120 s decreased about by 56% and 22% with the synchronized and continuous SAIs, respectively, compared to that of the base condition.

Effect of semi-return fuel supply system on the startability and HC/NOx emissions during cold transient starting phase in an LPi engine (LPG성상에 따른 세미리턴방식 LPi엔진의 시동성 및 싸이클 별 HC/NOx 배출 특성)

  • Kim, Ju-Won;Choi, Kwan-Hee;Myung, Cha-Lee;Park, Sim-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2910-2915
    • /
    • 2008
  • This paper was investigated the behaviors of the engine and combustion phenomena for various LPG compositions in the semi-return type system, which is not recircurated to LPG tank through furl rail, applied LPi engine during a cold idle condition and including a cold start of the engine. Cyclic HC and NOx emissions were measured at exhaust port to examine their formation mechanical and reduction mechanical with fast response gas analyzers. Various ignition timing is experimented to study the characteristics of combustion phenomena, HC/NOx emissions during fast idle. Also, this study was investigated start delay time, cylinder pressure, HC/NOx emissions, Mass Fraction Burned, starting time to evaluate performance of transient cold startability. Compared to the return type system, the semi-return type system have advantages in point of production cost and equivalent performance of engine starting time and pressure settling time.

  • PDF

GEase-K: Linear and Nonlinear Autoencoder-based Recommender System with Side Information (GEase-K: 부가 정보를 활용한 선형 및 비선형 오토인코더 기반의 추천시스템)

  • Taebeom Lee;Seung-hak Lee;Min-jeong Ma;Yoonho Cho
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.167-183
    • /
    • 2023
  • In the recent field of recommendation systems, various studies have been conducted to model sparse data effectively. Among these, GLocal-K(Global and Local Kernels for Recommender Systems) is a research endeavor combining global and local kernels to provide personalized recommendations by considering global data patterns and individual user characteristics. However, due to its utilization of kernel tricks, GLocal-K exhibits diminished performance on highly sparse data and struggles to offer recommendations for new users or items due to the absence of side information. In this paper, to address these limitations of GLocal-K, we propose the GEase-K (Global and EASE kernels for Recommender Systems) model, incorporating the EASE(Embarrassingly Shallow Autoencoders for Sparse Data) model and leveraging side information. Initially, we substitute EASE for the local kernel in GLocal-K to enhance recommendation performance on highly sparse data. EASE, functioning as a simple linear operational structure, is an autoencoder that performs highly on extremely sparse data through regularization and learning item similarity. Additionally, we utilize side information to alleviate the cold-start problem. We enhance the understanding of user-item similarities by employing a conditional autoencoder structure during the training process to incorporate side information. In conclusion, GEase-K demonstrates resilience in highly sparse data and cold-start situations by combining linear and nonlinear structures and utilizing side information. Experimental results show that GEase-K outperforms GLocal-K based on the RMSE and MAE metrics on the highly sparse GoodReads and ModCloth datasets. Furthermore, in cold-start experiments divided into four groups using the GoodReads and ModCloth datasets, GEase-K denotes superior performance compared to GLocal-K.

Exhaust Emissions Reduction using Unburned Exhaust Gas Ignition Technology and Hydrocarbon Adsorber (미연 배기가스 점화 기술과 탄화수소 흡착기를 이용한 배기저감)

  • Kim, C.S.;Chun, J.Y.;Choi, J.W.;Kim, D.S.;Lee, Y.S.;Kim, I.T.;Ohm, I.Y.;Cho, Y.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.150-155
    • /
    • 2000
  • Exhaust emissions from vehicles are the main source of air pollution. Many researchers are trying to find the way of reducing vehicle emissions, especially in the cold transient period of the FTP-75 test. In this study, UEGI (Unburned Exhaust Gas Ignition) technology, warming up the close-coupled catalytic converter (CCC) by igniting the unburned exhaust mixture using two glow plugs installed in the upstream of the catalyst, was developed. It was applied to an exhaust system with a hydrocarbon adsorber to ensure an effective reduction of HC emission during the cold start period. Results showed that the CCC reaches the light-off temperature (LOT) in a shorter time compared with the baseline exhaust system, and HC and CO emissions are reduced significantly during the cold start.

  • PDF

Study on Shortening Light-Off Time of Three Way Catalyst and Reduction of Harmful Emissions with Exhaust Synthetic Gas Injection(ESGI) Technology during Cold Start of SI Engines (가솔린 기관의 냉간시동 조건에서 합성가스 배기분사 기술에 의한 촉매의 활성화 온도 도달시간 단축 및 유해배출물 저감에 관한 연구)

  • Cho, Yong-Seok;Lee, Seang-Wock;Won, Sang-Yeon;Song, Chun-Sub;Park, Young-Joon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.94-101
    • /
    • 2008
  • Since regulations of exhaust emissions are continuously reinforced, studies to reduce harmful emissions during the cold start period of SI engines have been carried out very extensively worldwide. During the cold start period, raising the temperature of cold exhaust gas is a key strategy to minimize the light-off time of three way catalysts. In this study, a synthetic gas containing a large amount of hydrogen was injected into the exhaust manifold to raise the exhaust gas temperature and to reduce harmful emissions. The authors tried to evaluate changes in exhaust gas temperature and harmful emissions through controlling the engine operating parameters such as ignition timings and lambda values. Also the authors investigated both combustion stability and reduction of harmful emissions. Experimental results showed that combustion of the synthetic gas in the exhaust manifold is a very effective way for solving the problems of harmful emissions and light-off time. The results also showed that the strategy of retarded ignition timings and increased air/fuel ratios with ESGI is effective in raising exhaust gas temperature and reducing harmful emissions. Futhermore, the results showed that engine operating parameters ought to be controlled to lambda = 1.2 and ignition timing = $0{\sim}3^{\circ}$ conditions to reduce harmful emissions effectively under stable combustion conditions.

Construction and Start-up Test of Hot-firing Test Facility for KSLV-II Combustion Chamber (한국형발사체 연소기 연소시험설비의 구축 및 시운전)

  • Lee, Kwang-Jin;Yi, Seung Jae;Seo, Daeban;Hwang, Chang Hwan;Woo, Seongphil;Im, Ji-Hyuk;Jeon, Junsu;So, Younseok;Kim, Chae-Hyoung;Kim, Sunghyuk;Kim, Seung-Han;Cho, Namkyung;Han, Yeoung Min
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.1
    • /
    • pp.69-75
    • /
    • 2016
  • This paper covers the result of construction and start-up tests of the KSLV(Korea Space Launch Vehicle)-II combustion chamber hot-firing test facility. This facility was constructed from 2012 to 2014. Start-up test of this facility began in the second half of 2014. Oxidizer cold flow test, fuel cold flow test and cooling water cold flow test were carried out as start-up test. Afterward, ignition test of combustion chamber was accomplished. The result of ignition test is applied to set up start-up sequence of KSLV-II combustion chamber and utilized as base line data for hot-firing test of low and normal design point.

Cold spray technology as a potential additive manufacturing (3D 프린팅 공정 관점의 저온분사 기술)

  • Kim, Hyeong-Jun;Yun, Sang-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.90-90
    • /
    • 2017
  • Cold spray (Cold gas dynamic spray, kinetic spray) is the latest spray coating process that is known as solid state deposition process. In cold spray, inert gases (typically nitrogen and helium) accelerate powder particles prior to impact onto the substrate. Accelerating particles start to deposit onto the substrate after reaching certain critical velocities depending on the coating materials and substrate. Since process gas temperatures are kept below to melting temperature of the coating materials, it is possible to spray temperature sensitive materials such as copper and titanium, nanocrystal materials, and amorphous metals without affecting the phase change and oxide formation. It is also possible to deposit thick coatings because cold spray coatings present compressive residual stresses. This ability to deposit thick coatings is suitable to repair or rebuild parts as an additive manufacturing process. In this presentation, cold spray is introduced and compared to other additive manufacturing processes such as laser and electron beam based processes. It is also presented some applications especially in the view point of additive manufacturing process.

  • PDF

Recent Advances in Cold-Start and Drive Capability of Fuel Cell Electric Vehicle

  • Sung, Woo-Suk;Suh, Kyung-Won;Kweon, Soon-Gil;Park, Jong-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.47-50
    • /
    • 2008
  • The sub-zero cold is a major environmental consideration for the operational readiness of FCEVs because fuel cells produce water and utilize wet air with varying water content to generate electricity. Typical fuel cells thus have a fatal flaw in freezing conditions at startup. This drawback becomes more serious with the outsourced fuel cell that is entirely water-based for its internal humidification. In this background, the HMC's self-designed fuel cell was developed as an alternative and was employed in the Tucson-based FCEV in 2006 demonstrating its good cold-startup characteristics. The cold-startup capacity of the vehicle was validated through tests in the cold chamber and on the road, resulting in 50% stack power achieved in 250 seconds at $-15^{\circ}C$.

  • PDF

Improved Cold Item Recommendation Accuracy by Applying an Recommendation Diversification Method (추천 다양화 방법을 적용한 콜드 아이템 추천 정확도 향상)

  • Han, Jungkyu;Chun, Sejin
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1242-1250
    • /
    • 2022
  • When recommending cold items that do not have user-item interactions to users, even we adopt state-of-the-arts algorithms, the predicted information of cold items tends to have lower accuracy compared to warm items which have enough user-item interactions. The lack of information makes for recommender systems to recommend monotonic items which have a few top popular contents matched to user preferences. As a result, under-diversified items have a negative impact on not only recommendation diversity but also on recommendation accuracy when recommending cold items. To address the problem, we adopt a diversification algorithm which tries to make distributions of accumulated contents embedding of the two items groups, recommended items and the items in the target user's already interacted items, similar. Evaluation on a real world data set CiteULike shows that the proposed method improves not only the diversity but also the accuracy of cold item recommendation.

Design and Implementation of Host-side Cache Migration Engine for High Performance Storage in A Virtualization Environment (가상화 환경에서 스토리지 성능 향상을 위한 호스트 캐시 마이그레이션 엔진 설계 및 구현)

  • Park, Joon Young;Park, Hyunchan;Yoo, Chuck
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.6
    • /
    • pp.278-283
    • /
    • 2016
  • Due to explosive increase in the amount of data produced recently, cloud storage system is required to offer high and stable performance. However, VM (Virtual Machine) migration may result in lowered storage service performance. Especially, in an environment where the host-side flash cache is used in a cloud system, the existing warmed up cache is lost and the problematic cold start begins at a new cache due to a VM migration. In this paper, we first demonstrate and analyze the cold start problem and then propose Cachemior (Cache migrator) which enables efficient hot start of the flash cache.