Journal of the Korean Institute of Electrical and Electronic Material Engineers
/
v.18
no.4
/
pp.370-374
/
2005
AC loss of a superconducting conductor has a strong influence on the economic viability of a superconducting fault current limiter, which offers an attractive means to limit short circuit current in power systems. Therefore, the AC loss characteristics in several fault current limiting elements of a coil type have been investigated experimentally. The test result shows that AC losses measured in the fault current limiting elements depend on arrangement of a voltage lead. The AC loss of a bifilar coil is smallest among the fault current limiting elements of the coil type. The measured AC loss of the bifilar coil is much smaller than that calculated from Norris's elliptical model. However, the loss measured in a meander, which is frequently used in a resistive fault current limiter, agrees well to the theoretical one.
Solenoid coil is one of the commonly used one in superconducting power machines because it can produce uniform magnetic field at the center of the coil. Most of the AC loss in a solenoid coil is magnetization loss which is generated by the perpendicular magnetic field. This paper compares the electrical characteristics of two solenoid coils made of YBCO wire and BSCCO wire. We made and tested the BSCCO solenoid coil and YBCO solenoid coil which had the same number of turns and inner diameter. Number of turns and inner diameter of both coils were 30 turns and 10cm, respectively. AC loss of both coils were calculated by using the finite element method. Result shows that AC loss of YBCO coil was about 1/7 of that of the BSCCO coil when the current was 40A.
Kim, Sung-Tae;Cha, Doo-Yeol;Kang, Min-Suck;Cho, Se-Jun;Jang, Sung-Pil
Journal of the Korean Institute of Electrical and Electronic Material Engineers
/
v.22
no.1
/
pp.1-6
/
2009
Air core based transformers have been designed, simulated and fabricated by using micromachining process for the application of wireless power transmission with the range of frequency from 1 GHz to 20 GHz. Fabricated transformers are the types of solenoid transformers with primary and secondary coils. the size of fabricated transformer is $1.1{\times}1.5{\sim}2.15\;mm$ including ground shield. Transformers have been measured by dividing two groups based on the turns ratio between primary coil and secondary coil which are 1:1 transformers(the number of turns of primary coil and secondary coil: 3/3, 5/5, 7/7) and l:n transformers(the number of turns of primary coil and secondary coil: 3/3, 3/6, 3/9). As a result of the measurement, the lowest insertion loss of transformers ranged from 2 dB to 2.8 dB according to the number of turns between primary coil and secondary coil. And the lowest insertion loss from the transformers was measured at the frequency from 7 GHz to 11 GHz according to the number of turns between primary coil and secondary coil. Based on the measurement data from the microfabricated transformers, the transformer with the 3/3 turns in the primary coil and secondary coil showed best performance compared to others in terms of lowest insertion loss, lowest insertion loss frequency and bandwidth.
Park, Dong-Keun;Bang, Joo-Seok;Yang, Seong-Eun;Ahn, Min-Cheol;Sim, Ki-Deok;Yoon, Yong-Soo;Nam, Kwan-Woo;Seok, Bok-Yeol;Ko, Tae-Kuk
Progress in Superconductivity and Cryogenics
/
v.9
no.3
/
pp.21-25
/
2007
Superconducting fault current limiter (SFCL) is attractive apparatus to reduce fault current in power grid. Since it is applied to the alternating current (AC) power line, the SFCL has losses in the normal operation. Recently, coated conductor (CC) is noticeable material employed for resistive bifilar winding type SFCL in many research groups. Bifilar structure is expected to have low AC loss by magnetic field offset as compared with the single tape structure in the same length. This paper reports about characteristic of bifilar pancake type coil for SFCL application in AC loss aspect. The bifilar coil is wound using CC with facing on HTS sides each other. Transport AC loss measurement and characteristic analysis of the bifilar coil using CC have been performed at 77K. The test results are compared with the Norris equations and the test results of non-inductively wound paralleled solenoid type coil which is suggested and tested in this group at present.
Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
/
2003.10a
/
pp.37-40
/
2003
This paper presents calculated and measured AC losses of the HTS pancake coil. Magnetic field in the HTS coil under operating conditions was calculated by FEM. Results of measured ac loss in 4-stacked short sample were used in the AC loss calculation. Various methods, such as, electric method, calorimetric method, wattmeter method, were used to measure the AC loss.
Park Myung-Jin;Lee Sang-Soo;Lee Seung-Wook;Cha Guee-Soo;Lee Ji-Kwang
The Transactions of the Korean Institute of Electrical Engineers B
/
v.53
no.12
/
pp.732-738
/
2004
In this paper, we constructed 13 turns pancake coil and solenoid coil with HTS tape and measured AC losses of the pancake coil. The critical current of the pancake coil and the solenoid coil were 80A and 109A, respectively. To compare measured AC losses of the two coils, we carried out numerical analysis using 2-D FEM program for manufactured coils. This paper presents current density distribution, flux density distribution and AC losses of the pancake coil and the solenoid. As a result, we obtained that current density distribution was closely related to the orientation of magnetic field and distribution of AC losses were also closely related to the perpendicular component of flux density distribution in coil. The calculated AC losses of the two coils showed good agreement with measured AC losses and AC losses of the pancake coil was about 9 times bigger than that of the solenoid coil under the same turns and length.
The Transactions of the Korean Institute of Power Electronics
/
v.21
no.4
/
pp.356-363
/
2016
The design methodology of an adequate input voltage and magnetizing inductance to minimize reactive power is suggested to design a wireless power transfer (WPT) converter for high-power transfer efficiency. To increase the magnetizing inductance, the turn number of the WPT coil is increased, thus causing high parasitic resistance in the WPT coil. Moreover, the high coil resistance produces high conduction loss in the transfer and receive coils. Therefore, the analysis of conduction loss is used in the design of the WPT coil and the operating point of the WPT converter. To verify the proposed design methodology, the mathematical analysis of the conduction loss is presented by experimental results.
Journal of the Korean Institute of Electrical and Electronic Material Engineers
/
v.23
no.3
/
pp.194-198
/
2010
Recently as the electronic devices are getting to be more and more smaller, transformers are needed to be micro fabricated using MEMS technology. In this paper transformers have been fabricated and measured by depositing insulation layer to reduce the loss of eddy current and in the middle core a high permeability permalloy was designed based on the turns ratio between primary coil and secondary coil which are 1:1 transformers. (the number of turns of primary coil and secondary coil: 3/3, 5/5, 7/7). The size of the transformers including ground shield are $1mm{\times}1.5mm$, $1mm{\times}1.95mm$, $1mm{\times}2.35mm$ respectively. The line width, pitch and the height of post are 50um. Based on the measured data from the micro fabricated transformers, the 3/3 turns in the primary coil and secondary coil showed the lowest insertion loss with 1.5 dB at 480 MHz and the 7/7 turns in the primary coil and secondary coil showed the highest insertion loss with 2.5 dB at 280 MHz. Also confirmed that the bandwidth goes up as the number of turns goes down. There was some difference between the actual measured data and the HFSS simulation result. It looks as if it is an error of the difference between oxidation of copper or the permeability of SU-8.
Since superconducting wires have no resistance, electromagnets based on the superconducting wires produce no resistive heating with DC current as long as the current does not exceed the critical current of the wire. However, unlike resistive wires, superconducting wires exhibit AC heat loss. Embedding fine superconducting filaments inside copper matrix can reduce this AC loss to an acceptable level and opens the way to AC-capable superconducting coils. Here, we introduce an easy and accurate method to measure AC heat loss from sample superconducting coils by measuring changes in the rate of gas helium outflow from the liquid helium dewar in which the sample coil is placed. This method provides accurate information on total heat loss of a superconducting coil without any size limit, as long as the coil can fit inside the liquid helium dewar. With this method, we have evaluated AC heat loss of two superconducting solenoids, a 180-turn solid NbTi wire with 0.127 mm diameter (NbTi coil) and a 100-turn filamented wire with 1.4 mm diameter where 7 NbTi filaments were embedded in a copper matrix with copper to NbTi ratio of 6.7:1 (NbTi-Cu coil). Both coils were wound on 15 mm-diameter G-10 epoxy tubes. The AC heat losses of the NbTi and NbTi-Cu coils were evaluated as $53{\pm}4.7\;{\mu}W/A^2Hzcm^3$ and $0.67{\pm}0.16\;{\mu}W/A^2Hzcm^3$, respectively.
Journal of the korean academy of Pediatric Dentistry
/
v.21
no.2
/
pp.486-490
/
1994
Maxillary first molar is the key in normal occlusion. Mesial drifting of maxillary first molar result form early loss of second deciduous molar. Mesial drifted maxillary first molar was treated by headgear, Hawley appliance with screw, brasswire, etc. But, these appliance should be necessary for patients cooperation. Recently, several appliance for molar distalizing without patients cooperation has been introduced. We are reporting in this paper about distalizing of mesial drifted maxillary first molar because of early loss of deciduous second molar by open coil jig. Distalization of molar by open coil jig is predictable, rapid, painless method without mecesscity of patient cooperation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.