• 제목/요약/키워드: cohesive interaction

검색결과 52건 처리시간 0.034초

Estimation of a mixed-mode cohesive law for an interface crack between dissimilar materials

  • Song, Sung-Il;Kim, Kwang-Soo;Kim, Hyun-Gyu
    • Multiscale and Multiphysics Mechanics
    • /
    • 제1권1호
    • /
    • pp.35-51
    • /
    • 2016
  • In this paper, a mixed-mode cohesive law for an interface crack between epoxy and TR (transparent thermoplastic) resin is inversely estimated by the field projection method using numerical solutions and experimentally measured displacements. Displacements in a region far away from the crack tip are measured by digital image correlation technique. An inverse analysis, the field projection method formulated from the interaction J- and M-integrals with numerical auxiliary fields, is carried out to estimate a mixed-mode cohesive law for an interface crack between dissimilar materials. In the present approach, nonlinear deformations and damage near the crack tip are converted into the relationships of tractions and separations on crack surfaces behind the crack tip. The phase angle of mixed-mode singularities of the interface crack is also obtained from measured displacements in this study.

고체추진로켓 내부에서 발생하는 동적 파괴 현상과 유체-고체 상호작용의 시뮬레이션 - Part 1 (이론적 측면) (Simulation of dynamic fracture and fluid-structure interaction in solid propellant rockets : Part 1 (theoretical aspects))

  • 황찬규
    • 한국산학기술학회논문지
    • /
    • 제9권2호
    • /
    • pp.286-290
    • /
    • 2008
  • 본 논문은 고체 추진 로켓의 연소 중에 발생하는 고체추진체의 동적 파괴 현상 및 유체-구조 상호작용을 시뮬레이션 하기 위한 프로그램 개발에 대한 것이다. 개발된 프로그램은 구조해석을 위한 CVFE (cohesive Volumetric Finite Element) 방법과 외재적 ALE (Arbitrary Lagrangian Eulerian) 방법을 응용한 유한요소법 코드와 유동해석을 위한 외재적 비정렬 유한 체적 오일러 코드(Explicit Unstructured Finite Volume Euler code)로 구성된다. 개발된 프로그램의 또 다른 중요한 특징은 균열의 전파와 고체추진체의 변형에 따라 생기는 추진제 형상의 대변형이 발생할 때, 새로 생긴 유체 영역에서의 격자의 확장과 복구되는 능력이다.

Modeling of RC shear walls strengthened by FRP composites

  • Sakr, Mohammed A.;El-khoriby, Saher R.;Khalifa, Tarek M.;Nagib, Mohammed T.
    • Structural Engineering and Mechanics
    • /
    • 제61권3호
    • /
    • pp.407-417
    • /
    • 2017
  • RC shear walls are considered one of the main lateral resisting members in buildings. In recent years, FRP has been widely utilized in order to strengthen and retrofit concrete structures. A number of experimental studies used CFRP sheets as an external bracing system for retrofitting of RC shear walls. It has been found that the common mode of failure is the debonding of the CFRP-concrete adhesive material. In this study, behavior of RC shear wall was investigated with three different micro models. The analysis included 2D model using plane stress element, 3D model using shell element and 3D model using solid element. To allow for the debonding mode of failure, the adhesive layer was modeled using cohesive surface-to-surface interaction model at 3D analysis model and node-to-node interaction method using Cartesian elastic-plastic connector element at 2D analysis model. The FE model results are validated comparing the experimental results in the literature. It is shown that the proposed FE model can predict the modes of failure due to debonding of CFRP and behavior of CFRP strengthened RC shear wall reasonably well. Additionally, using 2D plane stress model, many parameters on the behavior of the cohesive surfaces are investigated such as fracture energy, interfacial shear stress, partial bonding, proposed CFRP anchor location and using different bracing of CFRP strips. Using two anchors near end of each diagonal CFRP strips delay the end debonding and increase the ductility for RC shear walls.

Out-of-plane seismic failure assessment of spandrel walls in long-span masonry stone arch bridges using cohesive interface

  • Bayraktar, Alemdar;Hokelekli, Emin;Halifeoglu, Meral;Halifeoglu, Zulfikar;Ashour, Ashraf
    • Earthquakes and Structures
    • /
    • 제18권1호
    • /
    • pp.83-96
    • /
    • 2020
  • The main structural elements of historical masonry arch bridges are arches, spandrel walls, piers and foundations. The most vulnerable structural elements of masonry arch bridges under transverse seismic loads, particularly in the case of out-of-plane actions, are spandrel wall. The vulnerability of spandrel walls under transverse loads increases with the increasing of their length and height. This paper computationally investigates the out-of-plane nonlinear seismic response of spandrel walls of long-span and high masonry stone arch bridges. The Malabadi Bridge with a main arch span of 40.86m and rise of 23.45m built in 1147 in Diyarbakır, Turkey, is selected as an example. The Concrete Damage Plasticity (CDP) material model adjusted to masonry structures, and cohesive interface interaction between the infill and the spandrel walls and the arch are considered in the 3D finite element model of the selected bridge. Firstly, mode shapes with and without cohesive interfaces are evaluated, and then out-of-plane seismic failure responses of the spandrel walls with and without the cohesive interfaces are determined and compared with respect to the displacements, strains and stresses.

연약지반 직렬 무한궤도 주행차량의 선회특성 연구 (A Study on the Steering Characteristics of Tandem Tracked Vehicle on Extremely Cohesive Soft Soil)

  • 김형우;이창호;홍섭;최종수;여태경;김시문
    • Ocean and Polar Research
    • /
    • 제32권4호
    • /
    • pp.361-367
    • /
    • 2010
  • The principal objective of this paper was to evaluate the steering characteristics of a tandem tracked vehicle, each side of which features two tandem tracks, when crawling on extremely cohesive soft soil. The tandem tracked vehicle is assumed to be a rigid-body with 6-dof. The dynamic analysis program of the tandem tracked vehicle was developed via Newmark's method and the incremental-iterative method. A terra-mechanics model of extremely cohesive soft soil was implemented according to the relationships of normal pressure to sinkage, of shear resistance to shear displacement, and of dynamic sinkage to shear displacement. In order to simplify the characteristics of contact interaction between track segments and cohesive soft soil, the characteristics of soil are equated to the properties of intact soil. In an effort to evaluate the steering characteristics of a tandem tracked vehicle crawling on extremely cohesive soft soil, a series of dynamic simulations were conducted for a tandem tracked vehicle model with respect to the front and rear steering angle, the steering ratio, and the initial velocity.

점착력을 고려한 표사유동 수치모델의 제안과 파랑에 의한 지형변동의 적용성 검토 (Sediment Transport Calculation Considering Cohesive Effects and Its Application to Wave-Induced Topographic Change)

  • 조용환;나카무라 토모아키;미즈타니 노리미;이광호
    • 한국해안·해양공학회논문집
    • /
    • 제25권6호
    • /
    • pp.405-411
    • /
    • 2013
  • 점착성 표사의 유동 특성을 다루기 위하여 점착력을 고려한 표사유동 수치계산 모델이 제안되었다. 제안된 계산 모델에서는, 각각의 모래 입자는 점토의 얇은 층으로 둘러싸여 있는 상태를 가정했다. 모래 입자에 작용하는 점착력을 적용하기 위해 한계 Shields수와 소류사량을 결정하는 항이 수정되었다. 제안된 표사모델은 3차원 유체 구조 지형변화 연성 수치계산 모델에 적용하여, 인공여울의 지형변화특성을 파악하였다. 수치계산 결과, 각각의 점토 함유율, 단위면적당 작용하는 점착 저항력, 함수비의 증가는 한계 Shields수를 증가 시키고, 반대로 소류사량을 감소시킴으로써 지형변화 경향에는 영향을 미치지 않은 채 여울의 지형변화를 억제하는 것으로 나타났다. 점토를 모래 입자와 혼합함으로써 여울의 지형변화를 감소시킬 수 있는 것을 암시한다.

그래핀의 모드 I 균열에 대한 분자동역학 해석으로부터 균열 선단 응집 법칙의 평가 (Evaluation of Crack-tip Cohesive Laws for the Mode I Fracture of the Graphene from Molecular Dynamics Simulations)

  • 김현규
    • 한국전산구조공학회논문집
    • /
    • 제26권5호
    • /
    • pp.393-399
    • /
    • 2013
  • 본 논문은 그래핀의 모드 I 균열 진전에 대한 분자동역학 해석과 수치보조장을 사용하는 영역 투영 방법의 역문제 해석 방법을 결합하여 균열 선단 응집 법칙을 평가하는 효율적인 방법을 제시하고 있다. 그래핀의 균열 선단 응집 법칙을 결정하는 것은 균열 선단에서 멀리 떨어진 영역의 변위를 사용하여 균열 면에서 미지의 응집 트랙션과 열림 변위를 구하는 역문제를 해석해야 하는데 상호 J-적분과 M-적분의 경로 보존성과 효율적인 수치보조장을 사용하는 방법을 적용하였다. 분자동역학 해석에서 원자 변위를 유한요소 절점 변위로 이동최소자승법을 사용하여 근사하였으며 안정적인 역문제 해석을 통하여 원자 단위의 거동을 연속체 해석으로 연결시킬 수 있는 새로운 방법을 보여주었다.

Finite element modeling of corroded RC beams using cohesive surface bonding approach

  • Al-Osta, Mohammed A.;Al-Sakkaf, Hamdi A.;Sharif, Alfarabi M.;Ahmad, Shamsad;Baluch, Mohammad H.
    • Computers and Concrete
    • /
    • 제22권2호
    • /
    • pp.167-182
    • /
    • 2018
  • The modeling of loss of bond between reinforcing bars (rebars) and concrete due to corrosion is useful in studying the behavior and prediction of residual load bearing capacity of corroded reinforced concrete (RC) members. In the present work, first the possibility of using different methods to simulate the rebars-concrete bonding, which is used in three-dimensional (3D) finite element (FE) modeling of corroded RC beams, was explored. The cohesive surface interaction method was found to be most suitable for simulating the bond between rebars and concrete. Secondly, using the cohesive surface interaction approach, the 3D FE modeling of the behavior of non-corroded and corroded RC beams was carried out in an ABAQUS environment. Experimental data, reported in literature, were used to validate the models. Then using the developed models, a parametric study was conducted to examine the effects of some parameters, such as degree and location of the corrosion, on the behavior and residual capacity of the corroded beams. The results obtained from the parametric analysis using the developed model showed that corrosion in top compression rebars has very small effect on the flexural behaviors of beams with small flexural reinforcement ratio that is less than the maximum ratio specified in ACI-318-14 (singly RC beam). In addition, the reduction of steel yield strength in tension reinforcement due to corrosion is the main source of reducing the load bearing capacity of corroded RC beams. The most critical corrosion-induced damage is the complete loss of bond between rebars and the concrete as it causes sudden failure and the beam acts as un-reinforced beam.

A quasistatic crack propagation model allowing for cohesive forces and crack reversibility

  • Philip, Peter
    • Interaction and multiscale mechanics
    • /
    • 제2권1호
    • /
    • pp.31-44
    • /
    • 2009
  • While the classical theory of Griffith is the foundation of modern understanding of brittle fracture, it has a number of significant shortcomings: Griffith theory does not predict crack initiation and path and it suffers from the presence of unphysical stress singularities. In 1998, Francfort and Marigo presented an energy functional minimization method, where the crack (or its absence) as well as its path are part of the problem's solution. The energy functionals act on spaces of functions of bounded variations, where the cracks are related to the discontinuity sets of such functions. The new model presented here uses modified energy functionals to account for molecular interactions in the vicinity of crack tips, resulting in Barenblatt cohesive forces, such that the model becomes free of stress singularities. This is done in a physically consistent way using recently published concepts of Sinclair. Here, for the consistency of the model, it becomes necessary to allow for crack reversibility and to consider local minimizers of the energy functionals. The latter is achieved by introducing different time scales. The model is solved in its global as well as in its local version for a simple one-dimensional example, showing that local minimization is necessary to yield a physically reasonable result.