• Title/Summary/Keyword: coherence bandwidth

Search Result 54, Processing Time 0.026 seconds

Coherence Bandwidth and Coherence Time for the Communication Frame in the Underwater of East Sea (동해 천해환경에서 수중 통신 프레임 설계를 위한 상관 대역폭과 상관 시간의 산출)

  • Choi, Dong-Hyun;Kim, Hyeon-Su;Kim, Nam-Ri;Kim, Seong-Il;Chung, Jae-Hak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.6
    • /
    • pp.365-373
    • /
    • 2010
  • For effective underwater digital communications, a frame structure is used, which includes pilots in time and frequency domains for channel estimation at a receiver. To estimate channel precisely, the each pilot should be located less than coherence time and coherence bandwidth. This paper measured underwater communication environments to provide coherence time and coherence bandwidth. Based on the measurement, the paper exhibits the calculated coherence time and coherent bandwidth is adequate by computer simulations.

Analysis of the Effect of Coherence Bandwidth on Leakage Suppression Methods for OFDM Channel Estimation

  • Zhao, Junhui;Rong, Ran;Oh, Chang-Heon;Seo, Jeongwook
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.4
    • /
    • pp.221-227
    • /
    • 2014
  • In this paper, we analyze the effect of the coherence bandwidth of wireless channels on leakage suppression methods for discrete Fourier transform (DFT)-based channel estimation in orthogonal frequency division multiplexing (OFDM) systems. Virtual carriers in an OFDM symbol cause orthogonality loss in DFT-based channel estimation, which is referred to as the leakage problem. In order to solve the leakage problem, optimal and suboptimal methods have already been proposed. However, according to our analysis, the performance of these methods highly depends on the coherence bandwidth of wireless channels. If some of the estimated channel frequency responses are placed outside the coherence bandwidth, a channel estimation error occurs and the entire performance worsens in spite of a high signal-to-noise ratio.

New Transient Request with Loose Ordering for Token Coherence Protocol (토큰 코히런스 프로토콜을 위한 경서열 트렌지언트 요청 처리 방법)

  • Park, Yun Kyung;Kim, Dae Young
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.10
    • /
    • pp.615-619
    • /
    • 2005
  • Token coherence protocol has many good reasons against snooping/directory-based protocol in terms of latency, bandwidth, and complexity. Token counting easily maintains correctness of the protocol without global ordering of request which is basis of other dominant cache coherence protocols. But this lack of global ordering causes starvation which is not happening in snooping/directory-based protocols. Token coherence protocol solves this problem by providing an emergency mechanism called persistent request. It enforces other processors in the competition (or accessing same shared memory block, to give up their tokens to feed a starving processor. However, as the number of processors grows in a system, the frequency of starvation occurrence increases. In other words, the situation where persistent request occurs becomes too frequent to be emergent. As the frequency of persistent requests increases, not only the cost of each persistent matters since it is based on broadcasting to all processors, but also the increased traffic of persistent requests will saturate the bandwidth of multiprocessor interconnection network. This paper proposes a new request mechanism that defines order of requests to reduce occurrence of persistent requests. This ordering mechanism has been designed to be decentralized since centralized mechanism in both snooping-based protocol and directory-based protocol is one of primary reasons why token coherence protocol has advantage in terms of latency and bandwidth against these two dominant Protocols.

On the Performance Analysis of Coherent Bandwidth in Underwater Channel Environments Using Beamforming Technologies Based on the Use of Measurement Data (측정 데이터를 이용한 빔형성기의 적용에 의한 수중 채널 환경에서의 상관 대역폭 분석)

  • Kim, Min-Sang;Cho, Dae-Young;Kim, Kye-Won;Lee, Tae-Seok;Park, Jong-Won;Lim, Yong-Gon;Ko, Hak-Lim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.4
    • /
    • pp.162-168
    • /
    • 2014
  • The OFDM system have been widely studied for the purpose of increasing data rate with more reliable communications in underwater channel environments. And it is possible only when the sub-carrier's bandwidth is smaller than the coherence bandwidth of channel in the underwater OFDM communication system. However, the size of the FFT for the OFDM system will be increased because the coherence bandwidth is as small as several tens of Hz in real underwater channel environments. Also, It is necessary to add a CP having a length longer than the rms delay spread of a channel. So the complexity of the system is increased and the data efficiency is reduced. Therefore, in this paper, we have studied the increase of the coherence bandwidth by adapting the beamforming technologies. To do this, we have collected data from real underwater channel environments and analyzed the coherence bandwidth when adapting the beamforming technologies. Analyzing the experimental data show that the coherence bandwidth by the beamforming technologies in underwater channel environments was greatly increased compared to that of a single sensor.

Computationally Efficient Lattice Reduction Aided Detection for MIMO-OFDM Systems under Correlated Fading Channels

  • Liu, Wei;Choi, Kwonhue;Liu, Huaping
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.503-510
    • /
    • 2012
  • We analyze the relationship between channel coherence bandwidth and two complexity-reduced lattice reduction aided detection (LRAD) algorithms for multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems in correlated fading channels. In both the adaptive LR algorithm and the fixed interval LR algorithm, we exploit the inherent feature of unimodular transformation matrix P that remains the same for the adjacent highly correlated subcarriers. Complexity simulations demonstrate that the adaptive LR algorithm could eliminate up to approximately 90 percent of the multiplications and 95 percent of the divisions of the brute-force LR algorithm with large coherence bandwidth. The results also show that the adaptive algorithm with both optimum and globally suboptimum initial interval settings could significantly reduce the LR complexity, compared with the brute-force LR and fixed interval LR algorithms, while maintaining the system performance.

Orthogonal Frequency Division Multiple Access with Statistical Channel Quality Measurements Part-II: Performance Analysis (통계적 채널 Quality 정보를 이용한 직교 주파수분할 다중접속(OFDMA) Part-II: 성능분석)

  • Yoon, Seo-Khyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2A
    • /
    • pp.110-118
    • /
    • 2006
  • In part-I of the paper, two sub-channel structures, either contiguous or distributed, were considered. Modeling the SNR distribution over a sub-channel as Ricean in general, the statistical chracteristics were investigated. In this part of the paper, we develop a generalized two step channel/resource allocation algorithm, which incorporates the two statistical measurements, and analyze the spectral efficiency of OFDMA in terms of average frequency utilization for the two sub-channel structures. In OFDMA with distributed structure, the key design parameter would be the sub-channel bandwidth. To give an insight into the impact on this parameter, we show in the numerical results the frequency utilization as a function of sub-channel bandwidth normalized to coherence bandwidth. As confirmed by numerical results, for contiguous sub-channel structure, we obtain the nominal multiuser diversity gain when the sub-channel bandwidth is smaller than the coherence bandwidth and lose the gain as it is getting larger.

Analysis of underwater acoustic communication channel environment in Kyungcheon Lake (경천호에서의 수중 음향 통신 채널 환경 분석)

  • Kim, Yong-Cheol;An, Jong-Min;Lee, Ho-Jun;Lee, Sang-Kug;Chun, JaeHak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • This paper estimated communication parameters according to underwater channel environment of lake for underwater acoustic communication. This paper calculated coherence time and coherence bandwidth through two experiments in actual lake environments. In both experiments, the chirp signal for channel estimation and the BPSK (Binary Phase Shift Keying) signal for calculating the bit error rate were transmitted. In each experiment, the distance between transmitter and receiver was 300 m to 400 m, and 500 m to 600 m. The coherence times calculated in experiment 1 and experiment 2 are 175 msec and 340 msec, and the coherence bandwidths are 10 Hz and 5.71 Hz, respectively. It is confirmed that the experimental results are more appropriate because the synchronization and the bit error rate performance are better only when the length of the synchronization signal and the interval of the pilot signal in the frame are shorter than the coherence time.

Rectangular prism pressure coherence by modified Morlet continuous wavelet transform

  • Le, Thai-Hoa;Caracoglia, Luca
    • Wind and Structures
    • /
    • v.20 no.5
    • /
    • pp.661-682
    • /
    • 2015
  • This study investigates the use of time-frequency coherence analysis for detecting and evaluating coherent "structures" of surface pressures and wind turbulence components, simultaneously on the time-frequency plane. The continuous wavelet transform-based coherence is employed in this time-frequency examination since it enables multi-resolution analysis of non-stationary signals. The wavelet coherence quantity is used to identify highly coherent "events" and the "coherent structure" of both wind turbulence components and surface pressures on rectangular prisms, which are measured experimentally. The study also examines, by proposing a "modified" complex Morlet wavelet function, the influence of the time-frequency resolution and wavelet parameters (i.e., central frequency and bandwidth) on the wavelet coherence of the surface pressures. It is found that the time-frequency resolution may significantly affect the accuracy of the time-frequency coherence; the selection of the central frequency in the modified complex Morlet wavelet is the key parameter for the time-frequency resolution analysis. Furthermore, the concepts of time-averaged wavelet coherence and wavelet coherence ridge are used to better investigate the time-frequency coherence, the coherently dominant events and the time-varying coherence distribution. Experimental data derived from physical measurements of turbulent flow and surface pressures on rectangular prisms with slenderness ratios B/D=1:1 and B/D=5:1, are analyzed.

Optical Coherence Tomography Based on a Continuous-wave Supercontinuum Seeded by Erbium-doped Fiber's Amplified Spontaneous Emission

  • Lee, Ju-Han;Jung, Eun-Joo;Kim, Chang-Seok
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.49-54
    • /
    • 2010
  • In this study, the use of a continuous-wave (CW) supercontinuum (SC) seeded by an erbium-doped fiber's amplified spontaneous emission (ASE) for optical-coherence tomography imaging is experimentally demonstrated. It was shown, by taking an in-depth image of a human tooth sample, that due to the smooth, flat spectrum and long-term stability of the proposed CW SC, it can be readily applied to the spectral-domain optical-coherence tomography system. The relative-intensity noise level and spectral bandwidth of the CW SC are also experimentally analyzed as a function of the ASE beam power.

Indoor Propagation Characteristics at 5.2GHz in Home and Office Environments

  • Chung, Hyun-Kyu;Bertoni, Henry L.
    • Journal of Communications and Networks
    • /
    • v.4 no.3
    • /
    • pp.176-188
    • /
    • 2002
  • This paper presents results of continuous wave and swept frequency response measurements over the frequency range of UNII lower and middle bands from 5.15GHz to 5.35GHz in indoor environments. From the continuous wave measurements at 5.2GHz, the excess path loss, and the statistical characteristics of the temporal and spatial fading were found. By sweeping the frequency over the band, envelope correlation as a function of frequency was found and the coherence bandwidth (CBW) was determined from the envelope correlation. Using a channel model, the CBW was used to evaluate RMS delay spread. The dependence of CBW on the antenna polarization was simulated and compared with the measurement results. The influence of room size and separation of transmitter and receiver for LOS paths on RMS delay spread was discussed.