• Title/Summary/Keyword: cognitive transmission

Search Result 231, Processing Time 0.028 seconds

Exploiting cognitive wireless nodes for priority-based data communication in terrestrial sensor networks

  • Bayrakdar, Muhammed Enes
    • ETRI Journal
    • /
    • v.42 no.1
    • /
    • pp.36-45
    • /
    • 2020
  • A priority-based data communication approach, developed by employing cognitive radio capacity for sensor nodes in a wireless terrestrial sensor network (TSN), has been proposed. Data sensed by a sensor node-an unlicensed user-were prioritized, taking sensed data importance into account. For data of equal priority, a first come first serve algorithm was used. Non-preemptive priority scheduling was adopted, in order not to interrupt any ongoing transmissions. Licensed users used a nonpersistent, slotted, carrier sense multiple access (CSMA) technique, while unlicensed sensor nodes used a nonpersistent CSMA technique for lossless data transmission, in an energy-restricted, TSN environment. Depending on the analytical model, the proposed wireless TSN environment was simulated using Riverbed software, and to analyze sensor network performance, delay, energy, and throughput parameters were examined. Evaluating the proposed approach showed that the average delay for sensed, high priority data was significantly reduced, indicating that maximum throughput had been achieved using wireless sensor nodes with cognitive radio capacity.

Vicious Cycle of MAC Protocols of Cognitive Radio Ad Hoc Networks: Problem Statement

  • Htike, Zaw;Hong, Choong-Seon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06d
    • /
    • pp.294-296
    • /
    • 2012
  • In cognitive radio ad hoc networks, secondary users need to exchange control information before data transmission. This task is not trivial in cognitive radio networks due to the dynamic nature of environment. This problem is sometime called rendezvous problem of cognitive radio network. The rendezvous problem is normally tackled by using two famous approaches: the use of common control channel (CCC) and using channel hopping (a.k.a sequence-based protocols). However, these two famous solutions form a vicious cycle while solving the rendezvous problem. The main purpose of this paper is to point out how and why this vicious cycle is formed.

Transmission Power-Based Spectrum Sensing for Cognitive Ad Hoc Networks

  • Choi, Hyun-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.2
    • /
    • pp.97-103
    • /
    • 2014
  • In spectrum sensing, there is a tradeoff between the probability of missed detection and the probability of a false alarm according to the value of the sensing threshold. Therefore, it is important to determine the sensing threshold suitable to the environment of cognitive radio networks. In this study, we consider a cognitive radio-based ad hoc network where secondary users directly communicate by using the same frequency band as the primary system and control their transmit power on the basis of the distance between them. First, we investigate a condition in which the primary and the secondary users can share the same frequency band without harmful interference from each other, and then, propose an algorithm that controls the sensing threshold dynamically on the basis of the transmit power of the secondary user. The analysis and simulation results show that the proposed sensing threshold control algorithm has low probabilities of both missed detection and a false alarm and thus, enables optimized spectrum sharing between the primary and the secondary systems.

Performance of Dual Polarized MIMO System using Six-Port Receiver for Cognitive Radio

  • Lee Sang-Yub;Yang Wan-Cheol;Lee Jeong-Suk;Kim Hak-Sun
    • Broadcasting and Media Magazine
    • /
    • v.11 no.1
    • /
    • pp.78-85
    • /
    • 2006
  • Cognitive radio is a paradigm for wireless communication in which either network of wireless node itself changes particular transmission or reception parameters to execute its tasks efficiently without interfering with the licensed users. This paper represents a performance of the cognitive radio technology on dual polarized MIMO system using six-port receiver. Six-port technology is well known direct conversion receiver. In this paper, a six-port phase discriminator based polarization signal separation is shown. That is, the SER(Symbol Error Rate) performance is improved using polarization separator and simple receiver architecture is proposed applying six-port receiver. The six-port technology has priority to adapt changeable frequency system and variable environments for cognitive radio. In general, dual polarized MIMO system has good capacity and quality using polarization separator [1].

Enhanced FCME Thresholding for Wavelet-Based Cognitive UWB over Fading Channels

  • Hosseini, Haleh;Fisal, Norsheila;Syed-Yusof, Sharifah Kamilah
    • ETRI Journal
    • /
    • v.33 no.6
    • /
    • pp.961-964
    • /
    • 2011
  • The cognitive ultra-wideband (UWB) network detects interfering narrowband systems and adapts its configuration accordingly. An inherently adaptive and flexible candidate for cognitive UWB transmission is the wavelet packet multicarrier modulation (WPMCM). In this letter, we use an enhanced forward consecutive mean excision thresholding algorithm to tackle the noise uncertainty in the wavelet-based sensing of WPMCM systems, and mathematical analysis is performed for primary user channel fading. As a benchmark, we compare the proposed system with a conventional fast Fourier transformation-based system, and performance investigation proves significant improvements when primary and secondary links are subjected to multipath fading and noise.

Cooperative Spectrum Sensing using Kalman Filter based Adaptive Fuzzy System for Cognitive Radio Networks

  • Thuc, Kieu-Xuan;Koo, In-Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.287-304
    • /
    • 2012
  • Spectrum sensing is an important functionality for cognitive users to look for spectrum holes before taking transmission in dynamic spectrum access model. Unlike previous works that assume perfect knowledge of the SNR of the signal received from the primary user, in this paper we consider a realistic case where the SNR of the primary user's signal is unknown to both fusion center and cognitive radio terminals. A Kalman filter based adaptive Takagi and Sugeno's fuzzy system is designed to make the global spectrum sensing decision based on the observed energies from cognitive users. With the capacity of adapting system parameters, the fusion center can make a global sensing decision reliably without any requirement of channel state information, prior knowledge and prior probabilities of the primary user's signal. Numerical results prove that the sensing performance of the proposed scheme outperforms the performance of the equal gain combination based scheme, and matches the performance of the optimal soft combination scheme.

Efficient Joint Resource Allocation for OFDM-Based Cooperative Cognitive Radio Networks with Rate-Guarantee

  • Yang, Xuezhou;Tang, Wei;Guo, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3004-3015
    • /
    • 2014
  • This letter proposes an efficient joint resource allocation scheme for OFDM-based cooperative cognitive radio networks (CRNs) under various practical limitations. Compared with those traditional approaches, which guarantee the transmission rates of cognitive users, the proposed scheme ensures that cognitive users are maintained in proportion to the predefined target rates. Numerical simulation shows that the proposed scheme can achieve a reasonable tradeoff between performance and computational complexity.

A Transmission Parameter Optimization Scheme Based on Genetic Algorithm for Dynamic Spectrum Access (동적 스펙트럼 접근을 위한 유전자 알고리즘 기반 전송 매개변수 최적화 기법)

  • Chae, Keunhong;Yoon, Seokho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.11
    • /
    • pp.938-943
    • /
    • 2013
  • In this paper, we propose a transmission parameter optimization scheme based on genetic algorithm for dynamic spectrum access systems. Specifically, we represent a multiple objective fitness function as a weighted sum of single objective fitness functions to optimize transmission parameters, and then, obtain optimized transmission parameters based on genetic algorithm for given transmission scenarios. From numerical results, we confirm that the transmission parameters are well optimized by using the proposed optimization scheme.

FTCARP: A Fault-Tolerant Routing Protocol for Cognitive Radio Ad Hoc Networks

  • Che-aron, Zamree;Abdalla, Aisha Hassan;Abdullah, Khaizuran;Rahman, Md. Arafatur
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.371-388
    • /
    • 2014
  • Cognitive Radio (CR) has been recently proposed as a promising technology to remedy the problems of spectrum scarcity and spectrum underutilization by enabling unlicensed users to opportunistically utilize temporally unused licensed spectrums in a cautious manner. In Cognitive Radio Ad Hoc Networks (CRAHNs), data routing is one of the most challenging tasks since the channel availability and node mobility are unpredictable. Moreover, the network performance is severely degraded due to large numbers of path failures. In this paper, we propose the Fault-Tolerant Cognitive Ad-hoc Routing Protocol (FTCARP) to provide fast and efficient route recovery in presence of path failures during data delivery in CRAHNs. The protocol exploits the joint path and spectrum diversity to offer reliable communication and efficient spectrum usage over the networks. In the proposed protocol, a backup path is utilized in case a failure occurs over a primary transmission route. Different cause of a path failure will be handled by different route recovery mechanism. The protocol performance is compared with that of the Dual Diversity Cognitive Ad-hoc Routing Protocol (D2CARP). The simulation results obviously prove that FTCARP outperforms D2CARP in terms of throughput, packet loss, end-to-end delay and jitter in the high path-failure rate CRAHNs.

Joint Beamforming and Power Allocation for Multiple Primary Users and Secondary Users in Cognitive MIMO Systems via Game Theory

  • Zhao, Feng;Zhang, Jiayi;Chen, Hongbin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.6
    • /
    • pp.1379-1397
    • /
    • 2013
  • We consider a system where a licensed radio spectrum is shared by multiple primary users(PUs) and secondary users(SUs). As the spectrum of interest is licensed to primary network, power and channel allocation must be carried out within the cognitive radio network so that no excessive interference is caused to PUs. For this system, we study the joint beamforming and power allocation problem via game theory in this paper. The problem is formulated as a non-cooperative beamforming and power allocation game, subject to the interference constraints of PUs as well as the peak transmission power constraints of SUs. We design a joint beamforming and power allocation algorithm for maximizing the total throughput of SUs, which is implemented by alternating iteration of minimum mean square error based decision feedback beamforming and a best response based iterative power allocation algorithm. Simulation results show that the algorithm has better performance than an existing algorithm and can converge to a locally optimal sum utility.