• Title/Summary/Keyword: cofactors

Search Result 94, Processing Time 0.038 seconds

Acetone Enhancement of Cumene Hydroperoxide-supported Microsomal Cytochrome P450-dependent Benzo(a)pyrene Hydroxylation

  • Moon, Ja-Young;Lim, Heung-Bin;Sohn, Hyung-Ok;Lee, Young-Gu;Lee, Dong-Wook
    • BMB Reports
    • /
    • v.32 no.3
    • /
    • pp.226-231
    • /
    • 1999
  • In vitro effects of acetone on cytochrome P450 (P450)-dependent benzo(a)pyrene (B(a)P) hydroxylation supported by cumene hydroperoxide (CuOOH) or NADPH/$O_2 $ systems were studied using 3-methylcholanthrene-pretreated rat liver microsomes. The maximal rate of B(a)P hydroxylation at constant concentration ($80\;{\mu}M)$ of the substrate was observed in the presence of $30\;{\mu}M$ CuOOH. However, at concentrations higher than $30\;{\mu}M$ CuOOH the hydroxylation rates were rapidly decreased. In contrast to CuOOH, at a concentration of $200\;{\mu}M$ NADPH, B(a)P hydroxylation rate reached a plateau. At concentrations higher than $200\;{\mu}M$ NADPH, the rates of substrate hydroxylation were maintained at the maximal rate with no inhibition. Acetone at 1% (v/v) enhanced both CuOOH- and NADPH/$O_2$-supported B(a)P hydroxylation at the optimal concentrations of the cofactors. At concentrations higher than 1% (v/v) acetone, substrate hydroxylation was sterero specific under the support of these two cofactors; it was strongly enhanced with $30\;{\mu}M$ CuOOH, but rather inhibited in the $200\;{\mu}M$> NADPH/$0_2 $ system. The lipid peroxidation rate induced during CuOOH-supported P450-dependent B(a)P hydroxylation was increased as CuOOH concentrations were increased. Acetone in the concentration range of 2.5~7.5%(v/v) inhibited lipid peroxidation during CuOOH supported B(a)P hydroxylation. The finding that CuOOH-supported B(a)P hydroxylation is greatly enhanced by acetone suggests that acetone may contribute more to the activation of oxygen (for the insertion of oxygen into the substrate) in the presence of CuOOH than with NADPH/$O_2$. Acetone may also contribute to the partial inhibition of destruction of microsomal membranes by lipid peroxidation.

  • PDF

Insights into Systems for Iron-Sulfur Cluster Biosynthesis in Acidophilic Microorganisms

  • Myriam, Perez;Braulio, Paillavil;Javiera, Rivera-Araya;Claudia, Munoz-Villagran;Omar, Orellana;Renato, Chavez;Gloria, Levican
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.9
    • /
    • pp.1110-1119
    • /
    • 2022
  • Fe-S clusters are versatile and essential cofactors that participate in multiple and fundamental biological processes. In Escherichia coli, the biogenesis of these cofactors requires either the housekeeping Isc pathway, or the stress-induced Suf pathway which plays a general role under conditions of oxidative stress or iron limitation. In the present work, the Fe-S cluster assembly Isc and Suf systems of acidophilic Bacteria and Archaea, which thrive in highly oxidative environments, were studied. This analysis revealed that acidophilic microorganisms have a complete set of genes encoding for a single system (either Suf or Isc). In acidophilic Proteobacteria and Nitrospirae, a complete set of isc genes (iscRSUAX-hscBA-fdx), but not genes coding for the Suf system, was detected. The activity of the Isc system was studied in Leptospirillum sp. CF-1 (Nitrospirae). RT-PCR experiments showed that eight candidate genes were co-transcribed and conform the isc operon in this strain. Additionally, RT-qPCR assays showed that the expression of the iscS gene was significantly up-regulated in cells exposed to oxidative stress imposed by 260 mM Fe2(SO4)3 for 1 h or iron starvation for 3 h. The activity of cysteine desulfurase (IscS) in CF-1 cell extracts was also upregulated under such conditions. Thus, the Isc system from Leptospirillum sp. CF-1 seems to play an active role in stressful environments. These results contribute to a better understanding of the distribution and role of Fe-S cluster protein biogenesis systems in organisms that thrive in extreme environmental conditions.

Optimization of cell growth and TAPS production by Pichia ciferrii mutant in batch culture

  • O, Dae-Il;Hong, Seong-Gap;Yu, Yeon-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.273-277
    • /
    • 2003
  • Batch culture of mutant derived from Pichia ciferrii ATCC 14091 was investigated for producing the intracellular tetraacetylphytosphingosine (TAPS). Composite experimental design was used to optimize the composition of the culture medium for maximizing the productivity of TAPS. In this experiment, various culture parameters were investigated that were the effects of temperature, the initial culture pH, the carbon-to-nitrogen ratio, the concentration of trace elements, and the concentration of cofactors. The optimal temperature for cell growth and TAPS synthesis appeared to be %25^{\circ}C$. An initial pH value of 7.5 gave the best results. Under the best condition, the maximum TAPS concentration indicated 7.2 g/L and its productivity was 0.06 g/L-hr in a 2.5 L jar

  • PDF

Development of PZT Piezoelectric Biosensor for the Detection of Formaldehyde (Formaldehyde 측정을 위한 PZT 압전 바이오센서 개발)

  • 김병옥;곽성곤;임동준
    • KSBB Journal
    • /
    • v.13 no.5
    • /
    • pp.477-482
    • /
    • 1998
  • A biosensor with PZT piezoelectric ceramic crystal was developed for the detection of formaldehyde gas. Poled PZT piezoelectric ceramic disk was made from ZrO2, TiO2 and Nb2O5, together with the addition of PbO and polyvinyl alcohol, through various processes of mixing, calcination drying, crushing, forming, sintering, polishing, ion coating and poling. Oscillator circuit of sensor was made of operational amplifier(AD811AN). Formaldehyde dehydrogenase was immobilized onto a piezoelectic ceramic crystal, together with the cofactors, reduced glutathione and nicotinamide adenine dinucleotide. The effect of flow rate on the sensitivity was determined by varing the flow rate of carrier gas from 24.7mL/min to 111.7mL/min through detector cell. The results indicated that as the flow rate was increased, the recovery rate was increased. And a significant increase in the sensitivity was observed in enhanced flow rate of carrier gas. Frequency difference(ΔF) of immobilized PZT piezoelectic disk increased proportionally to the concentration gas and reproduced to repeated exposures of formaldehyde gas(28ppm, Δ68Hz).

  • PDF

Epigenetic modification is linked to Alzheimer's disease: is it a maker or a marker?

  • Lee, Jung-Hee;Ryu, Hoon
    • BMB Reports
    • /
    • v.43 no.10
    • /
    • pp.649-655
    • /
    • 2010
  • Alzheimer's disease (AD) is the most common age-dependent neurodegenerative disorder and shows progressive memory loss and cognitive decline. Intraneuronal filaments composed of aggregated hyperphosphorylated tau protein, called neurofibrillary tangles, along with extracellular accumulations of amyloid $\beta$ protein (A$\beta$), called senile plaques, are known to be the neuropathological hallmarks of AD. In light of recent studies, epigenetic modification has emerged as one of the pathogenic mechanisms of AD. Epigenetic changes encompass an array of molecular modifications to both DNA and chromatin, including transcription factors and cofactors. In this review, we summarize how DNA methylation and changes to DNA chromatin packaging by post-translational histone modification are involved in AD. In addition, we describe the role of SIRTs, histone deacetylases, and the effect of SIRT-modulating drugs on AD. Lastly, we discuss how amyloid precursor protein (APP) intracellular domain (AICD) regulates neuronal transcription. Our understanding of the epigenomes and transcriptomes of AD may warrant future identification of novel biological markers and beneficial therapeutic targets for AD.

Studies on the Immobilized Whole-cell Enzyme of Arthrobacter simplamide Polymer

  • Kim, Doo-Ha;Lee, J.S.;Ryu, D.Y.
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1978.10a
    • /
    • pp.207.2-207
    • /
    • 1978
  • Arthrobacter simplex (ATCC 6946) was cultured, induced and immobilized in acrylamide polymer. The characteristics of the immobilized whole-cell enayme were studied using hydrocortisone as the substrate. The enzyme activity was increased during the incubation of the gel particle in 0.5% peptone media. The ennzyme reaction kinetics of the Δ'-dehydrogenase (3-oxosteroid Δ'-oxydo reductase, E. C. 1.3.99.4) foliowed the Michaelis-Menten type. Km and Vm values were different significantly after immobilization of the cell. The optimum pH and temperature were changed, too. Nitrogen sources such as casitone, peptone or tryptone were good media for the enzyme reaction. And there was no need to add cofactors of the enzyme in the pre-sence of energy sources used in the test. The effect of metal ions on the enzyme activity was insignificant. Organic solvents were used increase the substrate concentration and there was no optimum solvent concentration depending on the substrate concentration.

  • PDF

Coordination Chemical Approach to the Safety of Nitrofuran Drugs I. Reduction of Nitrofurazone Catalyzed by Molybdothiol Complexes (Nitrofuran계 의약품의 안전성에 관한 착물화학적 연구(I) Mo-thiol착물에 의한 Nitrofurazone의 촉매환원)

  • 김종윤;김보길
    • YAKHAK HOEJI
    • /
    • v.21 no.4
    • /
    • pp.184-192
    • /
    • 1977
  • In the presence of dithionite, two kinds of molybdothiol complexes, particularly isolated Mo-cysteine complexes, used as models for xanthine oxidase or aldehyde oxidase exhibited catalytic activity on the reduction of nitrofurazone to its amino derivative. Of the two Mo-cysteine complexes, the activity of oxo-bridged one was apparently greater than that of sulfido-bridged one. The promoting effect was hardly shown by added cofactors or their replacements of the enzymes. The catalyzed reduction is considered to take place by consecutive direct two-electron transfer mechanism from catalytically active reduced form of the molybdothiol complexes to nitrofurazone and the probable intermediates.

  • PDF

Metabolic Signaling to Epigenetic Alterations in Cancer

  • Kim, Jung-Ae;Yeom, Young Il
    • Biomolecules & Therapeutics
    • /
    • v.26 no.1
    • /
    • pp.69-80
    • /
    • 2018
  • Cancer cells reprogram cellular metabolism to support the malignant features of tumors, such as rapid growth and proliferation. The cancer promoting effects of metabolic reprogramming are found in many aspects: generating additional energy, providing more anabolic molecules for biosynthesis, and rebalancing cellular redox states in cancer cells. Metabolic pathways are considered the pipelines to supply metabolic cofactors of epigenetic modifiers. In this regard, cancer metabolism, whereby cellular metabolite levels are greatly altered compared to normal levels, is closely associated with cancer epigenetics, which is implicated in many stages of tumorigenesis. In this review, we provide an overview of cancer metabolism and its involvement in epigenetic modifications and suggest that the metabolic adaptation leading to epigenetic changes in cancer cells is an important non-genetic factor for tumor progression, which cooperates with genetic causes. Understanding the interaction of metabolic reprogramming with epigenetics in cancers may help to develop novel or highly improved therapeutic strategies that target cancer metabolism.

Alcohol Induced Hepatic Degeneration of HCV-Tg Mouse

  • Noh, Dong-hyung;Yu, Dae-yeul;Jeong, Kyu-shik
    • Proceedings of the Korean Society of Veterinary Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.18-18
    • /
    • 2003
  • Hepatitis C virus (HCV) has become a major public health issue and is prevalent in most countries. HCV infection starts frequently without clinical symptoms, and progresses in the majority of patients (70 to 85%) to persistent viremia and chronic hepatitis including cirrhosis and hepatocellularcarcinoma (HCC) [1]. Alcohol is one of the independent cofactors accelerating the development of HCC in chronic hepatitis C patients. This is of great interest because a synergy between excessive alcohol intake and HCV infection has been documented in the development of HCC in chronic hepatitis C patients [2]. The aim of this study is to investigate liver changes in ethanol feeding HCV-transgenic (Tg) mouse and to establish an animal model system. (omitted)

  • PDF

Toluene Monooxygenase의 Peroxide shuntting에 의한 TCE와 PCE 분해 특성

  • 류두현;김형수;최용욱;김용미;이경애;유재수;조현
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.277-280
    • /
    • 2004
  • TCE and PCE, suspected carcinogens, are the most common groundwater pollutant from extensive use as a solvent and degreaser. Escherichia coli TGI pBSKAN TOM Green and E. coli TGI pBSKAN ToMO, which were used DNA shuffling technique, produce Toluene-o-monooxygenase(TOM) and toluene-o-xylene- monooxygenase(ToMO). These cells and enzymes are degrading TCE and PCE, TOM and ToMO are needed to cofactor, such as NADH, NADPH and other cofactors. Used TCE and PCE degrading microorganisms experiment the contaminated material removal efficiency. A shunting test used NAD and Hydrogen peroxide.

  • PDF