• Title/Summary/Keyword: coelomic fluid

Search Result 15, Processing Time 0.028 seconds

Influence of formulated organic Plant tissue culture medium in the shoot regeneration study of Brassica juncea (l.) - Indian mustard

  • Kashyap, Suman;Tharannum, Seema;R, Taarini
    • Journal of Plant Biotechnology
    • /
    • v.46 no.2
    • /
    • pp.114-118
    • /
    • 2019
  • Efficient protocol for plant shoot regeneration of Brassica juncea L. CZERN was established by using organic media components and growth stimulating factors of the vermicompost and coelomic fluids. Formulated organic plant tissue culture media (Vermicompost (30%) extracts supplemented with 20 mL/L coelomic fluid) have shown maximum shoot regeneration when compared with the Murashige and Skoog (MS) medium, which were supplemented with 1 mg/L 6-benzyladenine (BA) and 0.1 mg/L of Naphthaleneacetic acid (NAA). Cotyledon explants produced the highest shoot regeneration frequency from fourday-old germinated seedlings in comparison with non-germinated seedlings. The vermicompost extracts have proved to be the best organic plant growth media to induce shoots from cotyledons compared to the MS media. Statistically significant difference (P = 0.008) for the root length, shoot length (P=0.000350) and the leaves (P=0.375) of the mustard plantlets were analyzed successfully. The survival rate was 98% in the mustard cotyledons on the Vermicompost extract media and 63% on MS media respectively. The coelomic fluid also is much suitable to induce shoots from cotyledons at lower concentrations. It was also shown that the vermicompost extract, which comprised of humic acids along with coelomic fluid, affected shoot regeneration from the cotyledons. An efficient and organic shoot regeneration study was standardized and it can be applicable in the improvement of the economically important crops.

Identification and Characterization of Microbial Community in the Coelomic Fluid of Earthworm (Aporrectodea molleri)

  • Yakkou, Lamia;Houida, Sofia;Dominguez, Jorge;Raouane, Mohammed;Amghar, Souad;Harti, Abdellatif El
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.391-402
    • /
    • 2021
  • Earthworms play an important role in soil fertilization, interacting continually with microorganisms. This study aims to demonstrate the existence of beneficial microorganisms living in the earthworm's immune system, the coelomic fluid. To achieve this goal, a molecular identification technique was performed, using cytochrome c oxidase I (COI) barcoding to identify abundant endogenic earthworms inhabiting the temperate zone of Rabat, Morocco. Then, 16S rDNA and ITS sequencing techniques were adopted for bacteria and fungi, respectively. Biochemical analysis, showed the ability of bacteria to produce characteristic enzymes and utilize substrates. Qualitative screening of plant growth-promoting traits, including nitrogen fixation, phosphate and potassium solubilization, and indole acetic acid (IAA) production, was also performed. The result of mitochondrial COI barcoding allowed the identification of the earthworm species Aporrectodea molleri. Phenotypic and genotypic studies of the sixteen isolated bacteria and the two isolated fungi showed that they belong to the Pseudomonas, Aeromonas, Bacillus, Buttiauxella, Enterobacter, Pantoea, and Raoultella, and the Penicillium genera, respectively. Most of the isolated bacteria in the coelomic fluid showed the ability to produce β-glucosidase, β-glucosaminidase, Glutamyl-β-naphthylamidase, and aminopeptidase enzymes, utilizing substrates like aliphatic thiol, sorbitol, and fatty acid ester. Furthermore, three bacteria were able to fix nitrogen, solubilize phosphate and potassium, and produce IAA. This initial study demonstrated that despite the immune property of earthworms' coelomic fluid, it harbors beneficial microorganisms. Thus, the presence of resistant microorganisms in the earthworm's immune system highlights a possible selection process at the coelomic fluid level.

Involvement of GTP-Binding Proteins in Stage-Specific Receptor-Mediated Endocytosis of Coelomic Fluid Proteins into Oocytes of Pseudopotamilla occelata (안점의 꽃갯지렁이 난포세포로 체강액 단백질의 단계특이적 유입을 위한 GTP-Binding Protein의 개입)

  • 남현정;강화선;이양림
    • The Korean Journal of Zoology
    • /
    • v.39 no.3
    • /
    • pp.292-298
    • /
    • 1996
  • Receptor-mediated endocytosis of coelomic fluid proteins (CP), yolk precursor proteins, appears to be regulated by multiple GTP-binding proteins during oogenesis of a polychaete, Pseudopotamilla occelata. Transport of 125 I-CP into the oocytes of intermediate size class, at which CP is the most actively transported, is enhanced by GTP but inhibited by GTP analogues, either GTPrS or GTP$\beta$S. The effects of GTP and GTPrS on the transport were also confirmed by tracing internalization of gold-labeled CP with transmission electron microscope. Internalization of gold-labeled CP into the yolk granules was enhanced by GTP but inhibited by GTPrS.

  • PDF

Fine Structural Study of Coelomic Solitary Spermatogenesis in Urechis unicinctus (개불 (Urechis unicinctus) 체강에서의 단위집단 정자형성(Solitary Spermatogenesis)에 관한 미세구조 연구)

  • Shin, Kil-Sang;Kim, Wan-Jong
    • Applied Microscopy
    • /
    • v.32 no.2
    • /
    • pp.107-119
    • /
    • 2002
  • Early spermatocytes of U. unicinctus are found in cluster floating in the coelomic fluid. The spermatocytes in a cluster form a syncytium or cytoplasmic mass, but there are no indications that the cytoplasmic mass is a component of a somatic cell. This work suggested that this type of spermatogenesis can be subordinated to solitary spermatogenesis in the sense excluding structural and functional support of a somatic cell for sperm developments. The solitary spermatogenesis in U. unicinctus is different in appearances and developmental details of sperm organelles and stage distributions from that of localized spermatogenesis. The acrosomal rudiments and centrioles can be observed in the early single cells of spermatogonia and clearly disclosed in the primary spermatocyte. In the stage of secondary spermatocyte, the acrosomal precursor and the centrioles begin to move to each cytoplasmic poles. The polarities of the organelles are attained at stage of spermatids. The spermatocytes and spermatids are arranged circumferentially along the cytoplasmic mass in which some amorphological cytoplasmic components are included. The spermatids reveal to be detached from the cytoplasmic mass into coelomic fluid. It suggests that the spermatogenesis are progressed in support of coelomic fluid, and the fact take into consideration that the spermatogenic cells can be in vitro cultured without somatic cells and with supplements of coelomic fluid.

The Differentiation of the Female Gonial Cell in Echiuroid (Urechis unicinctus): A Fine Structural Study (개불(Urechis unicinctus) 자성생식세포의 분화과정에 관한 미세구조연구)

  • Choe, Rim-Soon;Shin, Kil-Sang;Joo, Chung-No;Hwang, Dae-Yeon
    • Applied Microscopy
    • /
    • v.18 no.1
    • /
    • pp.77-91
    • /
    • 1988
  • Since the Urechis unicinctus-oocyte grows asynchronously in the body fluid, various oocytes in developmental stages can be prepared from each individual. The oocytes obtained from the coelomic fluid are then classified into five developmental stages according to the fine structural features. The earlier oocytes (${\sim}18{\mu}m$) form cluster and thereafter the oocytes grow singly without a distinct support of somatic cell, such as accessory cell or matrix cell. The yolk granules begin to appear already in the oocyte of cluster stage, however, the typical yolk was observed at the stage IV. Therefore, it was suggested that the yolk deposition is correlated with the coelomic fluid. The mature oocyte measured about $150{\mu}m$ produces the invagination not only on oolemma(indentation) but also on nuclear envelope. After the formation of the indentation, the mature ooytes are stored in storge sacs. The fine structural features were combined in aspect of structural concept of light microscopical observation.

  • PDF

Regulatgion of the Transport of Vitellogenin by Heterotrimeric G-Proteins during Oogenesis of a Polychaete, Pseudopotamilla occelata

  • Yi, Bong-Kyung;Lee, Yang-Rim
    • Animal cells and systems
    • /
    • v.2 no.1
    • /
    • pp.93-97
    • /
    • 1998
  • Coelomoic fluid protein (CP), a vitellogenin contained in the coelomic fluid of polychaetes, is transported by receptor-mediated endocvtosis that is controlled by GTP-binding proteins. Transport of 125l-CP was markedly inhibited by AlF4 and toxins such as cholera toxin and pertussis toxin. These effects appear to be mediated by cAMP, since 125l-CP transport was also greatly inhibited by dibutyryl cAMP. The results strongly suggest that hetero trimeric G-protein is involved in the regulation of 125l=CP transport through the activation of adenylyl cyclase. Immunoblotting tests with antibodies against Gsa and Gia subunits showed a Gsa subunit of 45 kDa in the membrane of oocytes of intermediate and large size classes and a Gia subunit of 41 kDa only in the oocytes of the intermediate size class.

  • PDF

Physiological Studies on the Function of Biological Membrane: Structural Changes of the Vitelline Envelopes during Oogenesis of a Polychaete, Nectoneanthes oxypoda (생체막의 기능에 대한 생리학적 연구: 갯지렁이 Nectoneanthes oxypoda의 난자형성단계에 따른 난황막의 구조적 변화)

  • Lee, Yang-Rim
    • Applied Microscopy
    • /
    • v.20 no.2
    • /
    • pp.117-126
    • /
    • 1990
  • Structural changes of the vitelline envelopes during oogenesis of a polychaete, Nectoneanthes oxypoda, were examined with a scanning electron micrscope. Oocytes grow in the same coelomic fluid to the final stage, but the surface appears to change in the structure during oogenesis. Projections, which were identified to be microvilli, change in shape, number and size. Short microvilli, which cover the surface of oocyte of $33{\mu}m$ diameter densely, grow in length, reaching a maximum at the stage of $73{\mu}m$. The number of microvilli increases with the stages of oogenesis, reaching a plateau at the stage of $82{\mu}m$. The observations suggest that control of material transport including yolk precursor proteins may be correlated with the structural changes in the microvilli.

  • PDF

Receptor-mediated Transport of Vitellogenin during Oogenesis of a Polychaete, Pseudopotamilla occelata

  • Lee, Bong-Gyeong;Nam, Jung-Hyeon;Lee, Yang-Rim
    • Animal cells and systems
    • /
    • v.1 no.2
    • /
    • pp.341-344
    • /
    • 1997
  • Receptor-mediated endocytosis has been suggested for a stage-specific transport mechanism of vitellogenin into the oocytes of a sabellid poly chaete, Pseudopotamilla occelata. Membrane proteins of oocytes of three size classes, including small (30-70 $\mu\textrm{m}$ in diameter), intermediate (70-140 $\mu\textrm{m}$ in diameter) and large (180-200 $\mu\textrm{m}$ in diameter), showed a atage-specific variation. Coelomic fluid proteins (CP), ass$\mu\textrm{m}$ed to be vitellogenin, consists of several proteins, which showed quite a different pattern from that of yolk proteins. Incorporation of $^{125}I$-CP into the oocytes of the intermediate size class almost linearly increases with time, showing a contrast to the pattern of the large size class, in which the incorporation is low and approaches a plateau, suggesting the vitellogenin transports by a regulated process only in the intermediate size class. Vitellogenin receptor proteins were identified to be 60 kDa and 68 kDa only in the intermediate size class by a ligand blotting test.

  • PDF