• Title/Summary/Keyword: coefficient of consolidation ratio

Search Result 88, Processing Time 0.022 seconds

Analysis of Bearing Capacity Characteristics on Granular Compaction Pile - focusing on the Model Test Results (조립토 다짐말뚝의 지지력 특성 분석 - 모형토조실험 결과를 중심으로)

  • Kang, Yun;Kim, Hong-Taek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.2
    • /
    • pp.51-62
    • /
    • 2004
  • Granular compaction piles have the load bearing capacity of the soft ground increase and have the settlement of foundation built on the reinforced soil reduce. The granular compaction group piles also have the consolidation of the soft ground accelerate and have the liquefaction caused by earthquake prevent using the granular materials such as sand, gravel, stone etc. However, this method is one of unuseful methods in Korea. The Granular compaction piles are constructed by grouping it with a raft system. The confining pressure at the center of bulging failure depth is a major variable in relation to estimate for the ultimate bearing capacity of the granular compaction piles. Therefore, a share of loading is determined considering the effect of load concentration ratio between the granular compaction piles and surrounding soils, and varies the magnitude of the confining pressure. In this study, method for the determination of the ultimate bearing capacity is proposed to apply a change of the horizontal pressure considering bulging failure depth, surcharge and loaded area. Also, the ultimate bearing capacity of the granular compaction piles is evaluated on the basis of previous study on the estimation of the ultimate bearing capacity and compared with the results obtained from laboratory scale model tests. And using the result from laboratory model tests, it is studied increase effect of the bearing capacity on the granular compaction piles and variance of coefficient of consolidation for the ground.

  • PDF

Settlement Characteristics of Soft Ground Applying the Suction Drain Method (석션드레인공법을 적용한 연약지반의 침하 특성)

  • Han, Sang-Jae;Yoo, Han-Kyu;Kim, Byung-Il;Kim, Soo-Sam
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.3
    • /
    • pp.15-27
    • /
    • 2013
  • A vacuum pressure method has been developed to solve many problems in the conventional surcharge method such as embankments, and its application has increased in the country. Recently, to control target settlements in the field, there have been many studies on the comparison of settlements between vacuum pressure method and surcharge load method in the same conditions. In this study, the settlement characteristics of soil subjected to vacuum pressure and surcharge pressure are discussed. The results indicate that if vacuum pressure is applied to the improvement of soft ground, there will be inward lateral displacement and the vacuum pressure will induce generally less settlement than a surcharge load of the same magnitude. The range of settlement reduction ratio is 0.54~0.67 based on Hooke's law, 0.91 based on field cases, 0.81 based on laboratory oedometer tests, 0.75 based on the theory of elasticity and coefficient of volumetric compressibility and 0.77~0.93 in its recent applications to the thick soft ground.

Estimation of Coefficient of Earth Pressure At Rest During SCP Installation by Drained Triaxial Compression Test (배수삼축압축시험을 통한 SCP 시공과정 중 정지토압계수 평가)

  • Kwon, Youngcheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.11
    • /
    • pp.93-101
    • /
    • 2012
  • SCP is a construction method that maximizes the effects of ground improvement by creating sand piles, which are formed by the compaction within soft ground. SCP is mainly used for consolidation and drain effects in clayey soils, and as a liquefaction countermeasure through effects such as compaction in loose sandy soils. In the design of SCP, if the sand piles with high stiffness are not taken into account, it can become a design that overly considered safety, and increased construction costs are highly likely to cause economic disadvantages. The changes in stress conditions and compaction mechanisms in the subsurface have been identified to a certain extent by study findings to date. However, the studies that considered SCP and in-situ ground as composite ground are fairly limited, and therefore, those studies have not achieved enough results to fully explain the relevant topics. In this study, the ground improved by SCP was regarded as the composite ground that consists of SCP and in-situ ground. Moreover, employing a CID test, this study examined the changes in the stress conditions of in-situ ground according to the installation of SCP through the relations between $K_0$ and SCP replacement ratio. At the same, whether the SCP installation procedure can be recreated in a laboratory was examined using a cyclic triaxial test. According to the test results, the changes in the stress conditions of the original ground occurred most largely in an initial stage of SCP installation, and after a certain time point, the vibration for SCP installation did not have a great influence on the changes in the stress conditions of the ground. Moreover, in order to recreate the behaviors of in-suit ground according to SCP in a laboratory, cyclic loading, which corresponds to casing vibration, was concluded to be essentially required.

The Change in Geotechnical Properties of Clay Liner and the Contamination Behavior of Groundwater Due to Contaminant (오염물질에 의한 점토 차수재의 역학적 특성변화 및 지하수 오염거동)

  • Ha, Kwang-Hyun;Lee, Sang-Eun;Chung, Sung-Rae;Chun, Byung-Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.1
    • /
    • pp.13-23
    • /
    • 2008
  • The triaxial compression tests and consolidation tests using NaCl solution and leachates as substitute pore (or saturated) water in samples were carried out to find out the behavior characteristics of strength, deformation and permeability coefficient of contaminated clay. Also, the chemical property analysis on the clay samples using scanning electron microscope and energy dispersive x-ray spectrometer were involved. The magnitudes of composition ratio were shown in the order of O, C, Si, Al, and Fe as a result of chemical composition analysis for clay samples. Besides, as the results of triaxial compression tests and consolidation tests, the shear strength, compression and permeability properties were increased with increasing in the concentration of contaminant (NaCl). It may be considered that these circumstances be caused by the changes of soil structure to flocculent structure due to the decrease in the thickness of diffuse double layer with increasing in the concentration of electrolyte. MT3D model was also using to grasp the procedures that the groundwater may be contaminated by the leachates permeated through the clay liner. The results of contaminant transport analysis showed a tendency that the predicted concentration of groundwater was higher with increasing in the initial concentration of $Cl^-$ ion and increased as a nonlinear curves with time. The transportation distance calculated by the use of regression equation between the distance from contaminant source and the concentration of $Cl^-$ ion was increased with increasing the initial concentration.

Soil Improvement Effect of Waste Lime Sludge Using Prefabricated Vertical Drains (연직배수재를 이용한 폐석회 슬러지의 지반개량 효과)

  • Shin, Eun-Chul;Park, Jeong-Jun;Kim, Jong-In
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.2
    • /
    • pp.51-60
    • /
    • 2005
  • The disposal problem of waste lime which is a residual product of lime industry have caused a lots of arguments in the past few years. Further more, waste lime contains a high moisture content which causes the disposal of waste lime is a great difficulty. The purpose of this study is to investigate for the effective dewatering solutions by placing various prefabricated vertical drains. The moisture content and degree of consolidation, pore water pressure, changes of settlement, bearing capacity with various vertical drains in waste lime were analyzed. The laboratory test results indicate that PBD is 2 times higher than circular drain in coefficient of consolidation. Based on the laboratory test results, settlement, pore water pressure, and dewatering measurements are shown in similar tendency. It is considered that PBD can drain primitive pore water much efficiently. The picture of SEM shows that circular drain filter has a serious clogging problem in comparison with PBD. In conclusion, PBD holds a superiority in waste lime's ground improvement and dewatering pore water pressure from the waste lime sludge. Also, circular drain is desired for some modification in its filtering system.

  • PDF

Determination of Characteristics of Laboratory Test and Proper Specification of Reformed Dredging Soil for Applying Pipe Mixing Method (관중혼합공법의 적용을 위한 개질처리 준설토의 실내실험 특성 및 적정 규격 결정)

  • Jeon, Sangok;Kang, Byungyoon;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.5
    • /
    • pp.15-24
    • /
    • 2022
  • In order to improve dredged area, long time and high cost is needed because of bad engineering and physical conditions. And there is no suitable example of pipe mixing method at domestic site. Moreover, applicability and effectiveness of this method is uncertain and shows different results between site and laboratory test. In order to solve these problems, we determined proper grain size distribution and water content range using dredged soil and reformed material (standard sand & material controlling grain size distribution) in the laboratory test. As a result, we confirmed that coefficient of sediment consolidation is increased and there is an improvement about separation sedimentation. Undrained shear strength was derived by water content of reformed dredging soil through regression analysis of test results. We suggest the correlation equation for determining mixing ratio.

Joint Characteristics in Sedimentary Rocks of Gyeongsang Supergroup (경상누층군 퇴적암의 절리 특성 연구)

  • Chang, Tae-Woo;Son, Byeong-Kook
    • The Journal of Engineering Geology
    • /
    • v.19 no.3
    • /
    • pp.351-363
    • /
    • 2009
  • Two orthogonal joint sets develop well only in sandstone beds in the sandstone-mudstone sequences of Gumi and Dasa outcrops within Cretaceous Gyeongsang Basin. And various joint data are similar in the beds of the same thickness in both outcrops, meaning that the joint sets were homogeneously produced by extensional deformation in the same regional stress field. Most of joints in the sandstone beds are orthogonal to, and confined by bed boundaries, which are believed to be formed by hydrofracturing during consolidation after burial. Two orthogonal joint sets are considered to be almost coeval on the basis of mutual abutting relationship which makes up fracture grid-lock and a product of rapid switching of ${\sigma}_2$ and ${\sigma}_3$ axes with constant ${\sigma}_1$ direction oriented to vertical. The joint sets in the sandstone beds show planar surfaces, parallel orientations and regular spacing, with joint spacing linearly proportional to bed thickness. The spacing distributions of the joints seem to correspond to log-normal to almost normal distribution in most of the beds. But multilayer joints do not display regular spacing and dominant size. Either joint set in this study is characterized by a high level of joint density and a saturated spacing distribution as indicated by the mode/mean ratio values and the Cv(coefficient of variance) values. Joint aperture tends to increase with the vertical length of the joints controlled by bed thickness.

Effects of Initial Stress on the Deformation of Sand (초기응력상태(初期應力狀態)가 모래의 변형(變形)에 미치는 영향(影響))

  • Kang, Byung Hee;Chung, In Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.65-72
    • /
    • 1983
  • Dry sand specimens for both normally consolidated and overconsolidated triaxial compression tests were prestressed on the path with five different coefficients of earth pressure 1.0, 3/4, 0.55, $K_0$ and 1/3. Deformation resistance of normally consolidated sand increased with increasing the initial stress for all coefficients of earth pressure during consolidation, and the deformation modulus at a certain initial stress showed a tendency to increase with increasing the coefficient of earth pressure. And deformation moduli($E_i$, $E_{50}$), were found to be proportional to the $n_{th}$ power of initial stresses[${\sigma}_{m0}{^{\prime}}$, ${\sigma}_{10}{^{\prime}}$, ${\sigma}_{30}{^{\prime}}$, $({\sigma}_1-{\sigma}_3)_0$] for both isotropically and anisotropically normally consolidated samples, where n varied from 0.37 to 0.92. Overconsolidated sand with the higher overconsolidation ratio showed the higher deformation modulus. It is concluded that the $K_0$-anisotropically consolidated triaxial compression test is necessary to obtain the more accurate value of in-situ deformation modulus.

  • PDF