• Title/Summary/Keyword: coding efficiency

Search Result 1,017, Processing Time 0.025 seconds

Voting-based Intra Mode Bit Skip Using Pixel Information in Neighbor Blocks (이웃한 블록 내 화소 정보를 이용한 투표 결정 기반의 인트라 예측 모드 부호화 생략 방법)

  • Kim, Ji-Eon;Cho, Hye-Jeong;Jeong, Se-Yoon;Lee, Jin-Ho;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.15 no.4
    • /
    • pp.498-512
    • /
    • 2010
  • Intra coding is an indispensable coding tool since it can provide random accessibility as well as error resiliency. However, it is the problem that intra coding has relatively low coding efficiency compared with inter coding in the area of video coding. Even though H.264/AVC has significantly improved the intra coding performance compared with previous video standards, H.264/AVC encoder complexity is significantly increased, which is not suitable for low bit rate interactive services. In this paper, a Voting-based Intra Mode Bit Skip (V-IMBS) scheme is proposed to improve coding efficiency as well as to reduce encoding time complexity using decoder-side prediction. In case that the decoder can determine the same prediction mode as what is chosen by the encoder, the encoder does not send that intra prediction mode; otherwise, the conventional H.264/AVC intra coding is performed. Simulation results reveal a performance increase up to 4.44% overall rate savings and 0.24 dB in peak signal-to-noise ratio while the frame encoding speed of proposed method is about 42.8% better than that of H.264/AVC.

Efficient Hardware Implementation of Real-time Rectification using Adaptively Compressed LUT

  • Kim, Jong-hak;Kim, Jae-gon;Oh, Jung-kyun;Kang, Seong-muk;Cho, Jun-Dong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.1
    • /
    • pp.44-57
    • /
    • 2016
  • Rectification is used as a preprocessing to reduce the computation complexity of disparity estimation. However, rectification also requires a complex computation. To minimize the computing complexity, rectification using a lookup-table (R-LUT) has been introduced. However, since, the R-LUT consumes large amount of memory, rectification with compressed LUT (R-CLUT) has been introduced. However, the more we reduce the memory consumption, the more we need decoding overhead. Therefore, we need to attain an acceptable trade-off between the size of LUT and decoding overhead. In this paper, we present such a trade-off by adaptively combining simple coding methods, such as differential coding, modified run-length coding (MRLE), and Huffman coding. Differential coding is applied to transform coordinate data into a differential form in order to further improve the coding efficiency along with Huffman coding for better stability and MRLE for better performance. Our experimental results verified that our coding scheme yields high performance with maintaining robustness. Our method showed about ranging from 1 % to 16 % lower average inverse of compression ratio than the existing methods. Moreover, we maintained low latency with tolerable hardware overhead for real-time implementation.

Sequence Variations in the Non-Coding Sequence of CTX Phages in Vibrio cholerae

  • Kim, Eun Jin;Yu, Hyun Jin;Kim, Dong Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.8
    • /
    • pp.1473-1480
    • /
    • 2016
  • This study focused on the variations in the non-coding sequences between ctxB and rstR of various CTX phages. The non-coding sequences of CTX-1 and CTX-cla are phage type-specific. The length of the non-coding region of CTX-1 and CTX-cla is 601 and 730 nucleotides, respectively. The non-coding sequence of CTX phage could be divided into three regions. There is a phage type-specific Variable region between two homologous Common regions (Common regions 1 and 2). The non-coding sequence of RS1 element is similar to CTX-1 except that Common region 1 is replaced by a short RS1-specific sequence. The non-coding sequences of CTX-2 and CTX-cla are homologous, indicating the non-coding sequence of CTX-2 is derived from CTX-cla. The non-coding region of CTX-O139 is similar to CTX-cla and CTX-2; however, it contains an extra phage type-specific sequence between Common region 2 and rstR. The variations in the non-coding sequences of CTX phages might be associated with the difference in the replication efficiency and the directionality in the integration into the V. cholerae chromosome.

Coding Unit-level Multi-loop Encoding Method based on JND for Perceptual Coding (JND 모델을 사용한 코딩 유닛 레벨 멀티-루프 인코딩 기반의 비디오 압축 방법)

  • Lim, Woong;Sim, Donggyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.5
    • /
    • pp.147-154
    • /
    • 2015
  • In this paper, we employed a model which defines the sensitivity according to the background luminance, so called JND (Just Noticeable Difference), and applied to the video coding. The proposed method finds out the maximum possible quantization parameter for the current unit based on the threshold of JND model and reduce the bitrate with similar perceptual quality. It selects the higher quantization parameter and reduce the bitrate when the reconstructed signal which is coded with higher quantization parameter is in a range of allowance based on the JND threshold, i.e. the signal has the similar perceptual quality compared to that is coded with the initial quantization parameter. The proposed algorithm was implemented on HM16.0, which is a reference software of the latest video coding standard HEVC (High Efficiency Video Coding) and the coding performance was evaluated. Compared to HM16.0, the proposed algorithm achieved maximum 20.21% and 6.18% of average bitrate reduction with the similar perceptual quality.

A New Motion Vector Coding Scheme for Improving Video Coding Efficiency (동영상 부호화 성능 개선을 위한 새로운 움직임 벡터 부호화 기법)

  • Ki, Dae-Wook;Kim, Hyun-Tae;Moon, Yong-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.5
    • /
    • pp.659-664
    • /
    • 2013
  • It is necessary to develop an efficient MVD coding scheme to improve the video coding performance. In this paper, combined codeword and joint codeword are suggested from analyses on statistical distributions of MVD according to the quantization steps and the conventional codeword structure. Based on these codewords, we propose new MVD coding scheme where one of the suggested codewords is employed to encode the MVD according to the coding environment. Simulation results show that the proposed scheme enhances the coding performance without the quality degradation.

DNA coding-Based Fuzzy System Modeling for Chaotic Systems (DNA 코딩 기반 카오스 시스템의 퍼지 모델링)

  • Kim, Jang-Hyun;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.524-526
    • /
    • 1999
  • In the construction of successful fuzzy models and/or controllers for nonlinear systems, the identification of a good fuzzy inference system is an important yet difficult problem, which is traditionally accomplished by a time-consuming trial-and-error process. In this paper, we propose a systematic identification procedure for complex multi-input single-output nonlinear systems with DNA coding method. A DNA coding method is optimization algorithm based on biological DNA as conventional genetic algorithms(GAs) are. The strings in the DNA coding method are variable-length strings, while standard GAs work with a fixed-length coding scheme. the DNA coding method is well suited to learning because it allows a flexible representation of a fuzzy inference system. We also propose a new coding method fur applying the DNA coding method to the identification of fuzzy models. This coding scheme can effectively represent the zero-order Takagi-Sugeno(TS) fuzzy model. To acquire optimal TS fuzzy model with higher accuracy and economical size, we use the DNA coding method to optimize the parameters and the number of fuzzy inference system. In order to demonstrate the superiority and efficiency of the proposed scheme, we finally show its application to a Duffing-forced oscillation system.

  • PDF

Scalable Video Coding with Low Complex Wavelet Transform (공간 웨이블릿 변환의 복잡도를 줄인 스케일러블 비디오 코딩에 관한 연구)

  • Park, Seong-Ho;Kim, Won-Ha;Jeong, Se-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.298-300
    • /
    • 2004
  • In the decoding process of interframe wavelet coding, the inverse wavelet transform requires huge computational complexity. However, the decoder may need to be used in various devices such as PDAs, notebooks, PCs or set-top Boxes. Therefore, the decoder's complexity should be adapted to the processor's computational power. A decoder designed in accordance with the processor's computational power would provide optimal services for such devices. So, it is natural that the complexity scalability and the low complexity codec are also listed in the requirements for scalable video coding. In this contribution, we develop a method of controlling and lowering the complexity of the spatial wavelet transform while sustaining almost the same coding efficiency as the conventional spatial wavelet transform. In addition, the proposed method may alleviate the ringing effect for certain video data.

  • PDF

Design of A Sequence Switch Coding Circuit Without Using Auxiliary Lines (보조선을 사용하지 않은 Sequence Switch Coding 회로의 설계)

  • Yoon, Myung-Chul
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.11
    • /
    • pp.24-33
    • /
    • 2009
  • The transition of auxiliary lines for transmitting coding information has been one of the major obstacles to restricting the scalability of Sequence Switch Coding (SSC) algorithms. A new design of SSC which does not use auxiliary lines is presented in this paper. The new design makes overhead transitions far less than the previous designs that use auxiliary lines. By applying the new technique, more than 50% of overhead transitions have been reduced, leading to the increase of 30% of the overall efficiency of SSC algorithm.

Motion Vector Coding for Improved Video Coding Efficiency (영상압축 효율 향상을 위한 움직임 벡터 부호화 방법)

  • Song, Kwan-Woong;Choi, Kwang-Pyo;Joo, Young-Hun;Jung, Bong-Soo;Jeon, Byeung-Woo
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.79-82
    • /
    • 2008
  • We propose a new motion vector skip coding method for better motion compensation-based coding of inter-slices in H.264/AVC. It is to best utilize the spatial correlation between motion vectors of adjacent 4x4 blocks by effective motion vector coding. For this purpose, we introduce a new macroblock type of Predictive (P) slice into those of the H.264/AVC, so that it can lead to reduction in the coding bits required for encoding motion information. Experimental results with several well-known test video sequences verify that better performance of the proposed method is obtained.

  • PDF

Reduced-Resolution Intra Block Coding Mode

  • Park, Sung-Jae;Nam, Jung-Hak;Sim, Dong-Gyu;Oh, Seoung-Jun;Hong, Jin-Woo
    • ETRI Journal
    • /
    • v.31 no.1
    • /
    • pp.80-82
    • /
    • 2009
  • In this letter, a new intra-block coding mode is presented to improve the coding efficiency for band-limited signals. A band-limited block is sub-sampled, and the sub-sampled signal is coded on the basis of the conventional prediction/transform coding. The rest of the samples are reconstructed by interpolation at the decoder side without any side information. Experimental results show that the proposed algorithm achieves coding gains of 2.7% for common intermediate format (CIF), 4.29% for quarter CIF, and 6.39% for 720p60 sequences against the H.264/AVC JM10.2 reference software.

  • PDF