Browse > Article
http://dx.doi.org/10.4014/jmb.1604.04022

Sequence Variations in the Non-Coding Sequence of CTX Phages in Vibrio cholerae  

Kim, Eun Jin (Department of Pharmacy, College of Pharmacy, Hanyang University)
Yu, Hyun Jin (Department of Pharmacy, College of Pharmacy, Hanyang University)
Kim, Dong Wook (Department of Pharmacy, College of Pharmacy, Hanyang University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.8, 2016 , pp. 1473-1480 More about this Journal
Abstract
This study focused on the variations in the non-coding sequences between ctxB and rstR of various CTX phages. The non-coding sequences of CTX-1 and CTX-cla are phage type-specific. The length of the non-coding region of CTX-1 and CTX-cla is 601 and 730 nucleotides, respectively. The non-coding sequence of CTX phage could be divided into three regions. There is a phage type-specific Variable region between two homologous Common regions (Common regions 1 and 2). The non-coding sequence of RS1 element is similar to CTX-1 except that Common region 1 is replaced by a short RS1-specific sequence. The non-coding sequences of CTX-2 and CTX-cla are homologous, indicating the non-coding sequence of CTX-2 is derived from CTX-cla. The non-coding region of CTX-O139 is similar to CTX-cla and CTX-2; however, it contains an extra phage type-specific sequence between Common region 2 and rstR. The variations in the non-coding sequences of CTX phages might be associated with the difference in the replication efficiency and the directionality in the integration into the V. cholerae chromosome.
Keywords
V. cholerae; CTX phage; non-coding sequence;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Faruque SM, Tam VC, Chowdhury N, Diraphat P, Dziejman M, Heidelberg JF, et al. 2007. Genomic analysis of the Mozambique strain of Vibrio cholerae O1 reveals the origin of El Tor strains carrying classical CTX prophage. Proc. Natl. Acad. Sci. USA 104: 5151-5156.   DOI
2 Das B, Bischerour J, Barre FX. 2011. VGJΦ integration and excision mechanisms contribute to the genetic diversity of Vibrio cholerae epidemic strains. Proc. Natl. Acad. Sci. USA 108: 2516-2521.   DOI
3 Das B, Bischerour J, Val ME, Barre FX. 2010. Molecular keys of the tropism of integration of the cholera toxin phage. Proc. Natl. Acad. Sci. USA 107: 4377-4382.   DOI
4 Das B, Martinez E, Midonet C, Barre FX. 2013. Integrative mobile elements exploiting Xer recombination. Trends Microbiol. 21: 23-30.   DOI
5 Davis BM, Kimsey HH, Chang W, Waldor MK. 1999. The Vibrio cholerae O139 Calcutta bacteriophage CTXΦ is infectious and encodes a novel repressor. J. Bacteriol. 181: 6779-6787.
6 Davis BM, Moyer KE, Boyd EF, Waldor MK. 2000. CTX prophages in classical biotype Vibrio cholerae: functional phage genes but dysfunctional phage genomes. J. Bacteriol. 182: 6992-6998.   DOI
7 Davis BM, Waldor MK. 2000. CTXΦ contains a hybrid genome derived from tandemly integrated elements. Proc. Natl. Acad. Sci. USA 97: 8572-8577.   DOI
8 Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML, Dodson RJ, et al. 2000. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406: 477-483.   DOI
9 Kamruzzaman M, Robins WP, Bari SMN, Nahar S, Mekalanos JJ, Faruque SM. 2014. RS1 satellite phage promotes diversity of toxigenic Vibrio cholerae by driving CTX prophage loss and elimination of lysogenic immunity. Infect. Immun. 82: 3636-3643.   DOI
10 Kaper JB, Morris JG Jr, Levine MM. 1995. Cholera. Clin. Microbiol. Rev. 8: 48-86.
11 Lee JH, Han KH, Choi SY, Lucas ME, Mondlane C, Ansaruzzaman M, et al. 2006. Multilocus sequence typing (MLST) analysis of Vibrio cholerae O1 El Tor isolates from Mozambique that harbour the classical CTX prophage. J. Med. Microbiol. 55: 165-170.   DOI
12 Kim EJ, Lee CH, Nair GB, Kim DW. 2015. Whole-genome sequence comparisons reveal the evolution of Vibrio cholerae O1. Trends Microbiol. 23: 479-489.   DOI
13 Kim EJ, Lee D, Moon SH, Lee CH, Kim SJ, Lee JH, et al. 2014. Molecular insights into the evolutionary pathway of Vibrio cholerae O1 atypical El Tor variants. PLoS Pathog. 10: e1004384.   DOI
14 Lee JH, Choi SY, Jeon YS, Lee HR, Kim EJ, Nguyen BM, et al. 2009. Classification of hybrid and altered Vibrio cholerae strains by CTX prophage and RS1 element structure. J. Microbiol. 47: 783-788.   DOI
15 McLeod SM, Kimsey HH, Davis BM, Waldor MK. 2005. CTXΦ and Vibrio cholerae: exploring a newly recognized type of phage-host cell relationship. Mol. Microbiol. 57: 347-356.   DOI
16 Midonet C, Das B, Paly E, Barre F-X. 2014. XerD-mediated FtsK-independent integration of TLCΦ into the Vibrio cholerae genome. Proc. Natl. Acad. Sci. USA 111: 16848-16853.   DOI
17 Mutreja A, Kim DW, Thomson NR, Connor TR, Lee JH, Kariuki S, et al. 2011. Evidence for several waves of global transmission in the seventh cholera pandemic. Nature 477: 462-465.   DOI
18 Nguyen BM, Lee JH, Cuong NT, Choi SY, Hien NT, Anh DD, et al. 2009. Cholera outbreaks caused by an altered Vibrio cholerae O1 El Tor biotype strain producing classical cholera toxin B in Vietnam in 2007 to 2008. J. Clin. Microbiol. 47: 1568-1571.   DOI
19 Waldor MK, Mekalanos JJ. 1996. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272: 1910-1914.   DOI
20 Safa A, Nair GB, Kong RY. 2010. Evolution of new variants of Vibrio cholerae O1. Trends Microbiol. 18: 46-54.   DOI