• Title/Summary/Keyword: coding efficiency

Search Result 1,016, Processing Time 0.025 seconds

Largest Coding Unit Level Rate Control Algorithm for Hierarchical Video Coding in HEVC

  • Yoon, Yeo-Jin;Kim, Hoon;Baek, Seung-Jin;Ko, Sung-Jea
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.3
    • /
    • pp.171-181
    • /
    • 2012
  • In the new video coding standard, called high efficiency video coding (HEVC), the coding unit (CU) is adopted as a basic unit of a coded block structure. Therefore, the rate control (RC) methods of H.264/AVC, whose basic unit is a macroblock, cannot be applied directly to HEVC. This paper proposes the largest CU (LCU) level RC method for hierarchical video coding in a HEVC. In the proposed method, the effective bit allocation is performed first based on the hierarchical structure, and the quantization parameters (QP) are then determined using the Cauchy density based rate-quantization (RQ) model. A novel method based on the linear rate model is introduced to estimate the parameters of the Cauchy density based RQ model precisely. The experimental results show that the proposed RC method not only controls the bitrate accurately, but also generates a constant number of bits per second with less degradation of the decoded picture quality than with the fixed QP coding and latest RC method for HEVC.

  • PDF

Fast Quadtree Structure Decision for HEVC Intra Coding Using Histogram Statistics

  • Li, Yuchen;Liu, Yitong;Yang, Hongwen;Yang, Dacheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1825-1839
    • /
    • 2015
  • The final draft of the latest video coding standard, High Efficiency Video Coding (HEVC), was approved in January 2013. The coding efficiency of HEVC surpasses its predecessor, H.264/MPEG-4 Advanced Video Coding (AVC), by using only half of the bitrate to encode the same sequence with similar quality. However, the complexity of HEVC is sharply increased compared to H.264/AVC. In this paper, a method is proposed to decrease the complexity of intra coding in HEVC. Early pruning and an early splitting strategy are applied to the quadtree structure of coding tree units (CTU) and residual quadtree (RQT). According to our experiment, when our method is applied to sequences from Class A to Class E, the coding time is decreased by 44% at the cost of a 1.08% Bjontegaard delta rate (BD-rate) increase on average.

Efficient Inter Prediction Mode Decision Method for Fast Motion Estimation in High Efficiency Video Coding

  • Lee, Alex;Jun, Dongsan;Kim, Jongho;Choi, Jin Soo;Kim, Jinwoong
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.528-536
    • /
    • 2014
  • High Efficiency Video Coding (HEVC) is the most recent video coding standard to achieve a higher coding performance than the previous H.264/AVC. In order to accomplish this improved coding performance, HEVC adopted several advanced coding tools; however, these cause heavy computational complexity. Similar to previous video coding standards, motion estimation (ME) of HEVC requires the most computational complexity; this is because ME is conducted for three inter prediction modes - namely, uniprediction in list 0, uniprediction in list 1, and biprediction. In this paper, we propose an efficient inter prediction mode (EIPM) decision method to reduce the complexity of ME. The proposed EIPM method computes the priority of all inter prediction modes and performs ME only on a selected inter prediction mode. Experimental results show that the proposed method reduces computational complexity arising from ME by up to 51.76% and achieves near similar coding performance compared to HEVC test model version 10.1.

Tile Level Rate Control for High Efficiency Video Coding (HEVC) on Multi-core Platform

  • Marzuki, Ismail;Ahn, Yong-Jo;Sim, Donggyu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.11a
    • /
    • pp.147-148
    • /
    • 2015
  • This paper proposes a tile level rate control for High Efficiency Video Coding (HEVC). The proposed tile level rate control is designed by considering the multi-core platform of tile in HEVC. The proposed tile level rate control allocates the number of bits for each tile based on the predetermined weight generated from the current picture level rate control. According to the experimental results, the proposed tile level rate control for HEVC on multi-core platform loses negligibly the bitrate accuracy about 0.07% on average over the reference software HM-14.0.

  • PDF

Fast Prediction Unit Decision Using Quantized Transform Coefficient (양자화된 트랜스폼 계수를 이용한 고속 Prediction Unit 결정방법)

  • Gweon, Ryeong-Hee;Lee, Yung-Lyul
    • Journal of Broadcast Engineering
    • /
    • v.17 no.5
    • /
    • pp.725-733
    • /
    • 2012
  • MPEG and VCEG have constituted a collaboration team called JCT-VC(Joint Collaborative Team on Video Coding) and have been developing the HEVC(High Efficiency Video Coding) standard. The next generation video coding standard HEVC shows higher compression rate compared with the H.264/AVC standard, but the encoder computational complexity of the HEVC encoder is significantly high. In order to reduce this computational complexity in the HEVC encoder, a fast prediction unit decision is proposed. The proposed fast prediction unit decision method reduces the encoder complexity by skipping the remaining prediction units if the current prediction unit does not have any non-zero quantized transform coefficient. The proposed method reduces the encoder computational complexity by 50.3% comparing with HM6.0 but it maintains the same level of coding efficiency.

Fast Decision Method of Adaptive Motion Vector Resolution (적응적 움직임 벡터 해상도 고속 결정 기법)

  • Park, Sang-hyo
    • Journal of Broadcast Engineering
    • /
    • v.25 no.3
    • /
    • pp.305-312
    • /
    • 2020
  • As a demand for a new video coding standard having higher coding efficiency than the existing standards is growing, recently, MPEG and VCEG has been developing and standardizing the next-generation video coding project, named Versatile Video Coding (VVC). Many inter prediction techniques have been introduced to increase the coding efficiency, and among them, an adaptive motion vector resolution (AMVR) technique has contributed on increasing the efficiency of VVC. However, the best motion vector can only be determined by computing many rate-distortion costs, thereby increasing encoding complexity. It is necessary to reduce the complexity for real-time video broadcasting and streaming services, but it is yet an open research topic to reduce the complexity of AMVR. Therefore, in this paper, an efficient technique is proposed, which reduces the encoding complexity of AMVR. For that, the proposed method exploits a special VVC tree structure (i.e., multi-type tree structure) to accelerate the decision process of AMVR. Experiment results show that the proposed decision method reduces the encoding complexity of VVC test model by 10% with a negligible loss of coding efficiency.

New Binarization Method of Transformed Coefficient for CABAC In H.264/AVC (H.264/AVC의 CABAC 엔트로피 부호기를 위한 변환 계수의 새로운 이진화 방법)

  • Kim, Dae-Yeon;Lee, Yung-Lyul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.1
    • /
    • pp.64-74
    • /
    • 2008
  • It is well-known that the coding efficiency of CABAC which is one of the entropy coding methods in H.264/AVC is lower than that of CAVLC at high bitrate in intra coding, even if CABAC shows higher coding efficiency than CAVLC. Therefore, for high quality video application, this paper proposes new binarization methods about the quantized DCT coefficients that are partitioned into four regions such that CABAC shows similar coding efficiency to CAVLC at high bitrate. The proposed binarization methods consist of separate binarization tables about the four partitioned DCT coefficients considering the statistical characteristics of the quantized DCT coefficients. The proposed binarizaton method for the quantized DCT coefficients shows higher coding efficiency than CABAC in H.264/AVC and shows very similar result to CAVLC at high bitrate.

Fast Partition Decision Using Rotation Forest for Intra-Frame Coding in HEVC Screen Content Coding Extension (회전 포레스트 분류기법을 이용한 HEVC 스크린 콘텐츠 화면 내 부호화 조기분할 결정 방법)

  • Heo, Jeonghwan;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.23 no.1
    • /
    • pp.115-125
    • /
    • 2018
  • This paper presents a fast partition decision framework for High Efficiency Video Coding (HEVC) Screen Content Coding (SCC) based on machine learning. Currently, the HEVC performs quad-tree block partitioning process to achieve optimal coding efficiency. Since this process requires a high computational complexity of the encoding device, the fast encoding process has been studied as determining the block structure early. However, in the case of the screen content video coding, it is difficult to apply the conventional early partition decision method because it shows different partition characteristics from natural content. The proposed method solves the problem by classifying the screen content blocks after partition decision, and it shows an increase of 3.11% BD-BR and 42% time reduction compared to the SCC common test condition.

CU Depth Decision Based on FAST Corner Detection for HEVC Intra Prediction (HEVC 화면 내 예측을 위한 FAST 에지 검출 기반의 CU 분할 방법)

  • Jeon, Seungsu;kim, Namuk;Jeon, Byeungwoo
    • Journal of Broadcast Engineering
    • /
    • v.21 no.4
    • /
    • pp.484-492
    • /
    • 2016
  • The High efficiency video coding (HEVC) is the newest video coding standard that achieves coding efficiency higher than previous video coding standards such as H.264/AVC. In intra prediction, the prediction units (PUs) are derived from a large coding unit (LCU) which is partitioned into smaller coding units (CUs) sizing from 8x8 to 64x64 in a quad-tree structure. As they are divided until having the minimum depth, Optimum CU splitting is selected in RDO (Rate Distortion Optimization) process. In this process, HEVC demands high computational complexity. In this paper, to reduce the complexity of HEVC, we propose a fast CU mode decision (FCDD) for intra prediction by using FAST (Features from Accelerated Segment Test) corner detection. The proposed method reduces computational complexity with 53.73% of the computational time for the intra prediction while coding performance degradation with 0.7% BDBR is small compared to conventional HEVC.

Scalable Video Coding Using Large Block and its Performance Analysis (Large Block을 적용한 SVC 부호화 및 성능분석)

  • Park, Un-Ki;Choi, Haechul;Kang, Jung Won;Kim, Jae-Gon
    • Journal of Broadcast Engineering
    • /
    • v.18 no.2
    • /
    • pp.249-260
    • /
    • 2013
  • Recently, High-Efficiency Video Coding (HEVC) has been developed as a new video coding standard mainly focusing on the coding of ultra high definition (UHD) videos as the high resolution and high quality videos are getting more popular. Furthermore, the scalable extension of HEVC is being standardized for more efficient provision of HD and UHD services in the communications-broadcasting convergence environment. In this paper, we propose an improved scalable video coding method of H.264/AVC to achieve high coding efficiency particularly for UHD and HD videos. The basic idea is to allow large block size in H.264/AVC SVC, which results in more efficient inter-layer prediction and syntax elements coding. The experimental results show that it achieves an average 4.53% reduction in BD-rate relative to H.264/AVC SVC.