
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 5, May 2015 1825
Copyright ⓒ 2015 KSII

Fast Quadtree Structure Decision for HEVC
Intra Coding Using Histogram Statistics

Yuchen Li1, Yitong Liu1, Hongwen Yang1, Dacheng Yang1

1Wireless Theories and Technologies Lab (WT&T@BUPT)
Beijing University of Posts and Telecommunication

Beijing, 100876, P.R. China
[e-mail: liyuchen@bupt.edu.cn, liuyin212@gmail.com,

yanghong@bupt.edu.cn, yangdc@bupt.edu.cn]

Received January 8, 2014; revised March 10, 2015; accepted April 19, 2015;
published May 31, 2015

Abstract

The final draft of the latest video coding standard, High Efficiency Video Coding (HEVC),
was approved in January 2013. The coding efficiency of HEVC surpasses its predecessor,
H.264/MPEG-4 Advanced Video Coding (AVC), by using only half of the bitrate to encode
the same sequence with similar quality. However, the complexity of HEVC is sharply
increased compared to H.264/AVC. In this paper, a method is proposed to decrease the
complexity of intra coding in HEVC. Early pruning and an early splitting strategy are applied
to the quadtree structure of coding tree units (CTU) and residual quadtree (RQT). According
to our experiment, when our method is applied to sequences from Class A to Class E, the
coding time is decreased by 44% at the cost of a 1.08% Bjontegaard delta rate (BD-rate)
increase on average.

Keywords: HEVC, Fast Intra Coding Algorithm, Histogram Statistics, Quadtree Structure

A preliminary version of this paper appeared in IEEE ICC 2009, June 14-18, Dresden, Germany. This version
includes a concrete analysis and supporting implementation results on MICAz sensor nodes. This research was
supported by a research grant from the IT R&D program of MKE/IITA, the Korean government [2005-Y-001-04,
Development of Next Generation Security Technology]. We express our thanks to Dr. Richard Berke who checked
our manuscript.

http://dx.doi.org/10.3837/tiis.2015.05.015 ISSN : 1976-7277

1826 Li et al.: Fast Quadtree Structure Decision for HEVC Intra Coding Using Histogram Statistics

1. Introduction

The state-of-the-art video coding standard, High Efficiency Video Coding (HEVC), is the
current joint video coding standardization project of the ITU-T Video Coding Experts Group
and the ISO/IEC Moving Picture Experts Group. HEVC is a typical hybrid video coder, which
means it uses intra and inter frames to reduce spatial and temporal redundancy. However,
almost all parts of the encoder have been improved compared to H.264/MPEG-4 Advanced
Video Coding (H.264/AVC), including a new picture segment method, a finer intra searching
scheme using 35 directional modes, a new sample adaptive offset (SAO) filter combined with
the deblocking filter, and a temporal motion vector prediction scheme (TMVP). With these
new features, HEVC doubles the compression ratio at the same level of video quality
compared to H.264/AVC. According to the experimental results in [1], the high compression
ratio of HEVC mainly benefits from the larger coding tree unit (CTU) size and transform unit
(TU) size.

The CTU is the basic unit for performing further splitting and is similar to micro blocks
(MB) in H.264/AVC. The size of the CTU is 64x64, 32x32, or 16x16 [2] according to the
content of the video, where 64x64 is a typical setting for most of the testing sequences [2]. To
extend the adaptation of the partition, a CTU is allowed to split into four equal pieces
recursively until the smallest size of partition is reached, which is usually set to 8x8. The
partitioning process leads to a quadtree CTU structure, and the leaf node of the quadtree is
called the coding unit (CU). A CU is the basic unit for further splitting into prediction units
(PU) and transform units (TU). To decide whether a CU needs to split into four sub-CUs,
Rate-distortion Optimization (RDO) will be conducted for the current CU and its four
sub-CUs, from which two costs will be obtained. One represents the condition of splitting the
current CU. The other stands for no-split. HEVC will choose the way that leads to a smaller
cost for the current CU.

For the residual coding, HEVC divides the CUs recursively into TUs, which is the basic
unit for transform coding. The partitioning process is similar to what is done in CTU. The
structure of the recursive partition in deciding TU size is called the residual quadtree (RQT).
When the CTU structure is determined, the RQT will set each CU as the root node and search
for the best TU partition at each depth. Typically, the max depth of RQT in intra coding is set
to 3, and the TU size is set to 32x32, 16x16, 8x8, or 4x4 [2].

Although larger sizes of CTUs and TUs offer a great benefit in improving the coding
efficiency, a heavy computation burden is presented by searching for the best quadtree pattern
at each depth. An experiment in [1] shows that if the maximum size of a CU is limited to
16x16, then the encoding time will reduce to 58% of the origin time, and if the CTU size is
64x64 and MaxDepth is 3, the number of all possible CTU partitions is calculated by the
following equation.

1 + 1 + 𝑃44 + 𝑃44 × 𝑃44 = 602 (1)

The analysis above presents it is the quadtree structure in HEVC brings huge complexity.

Therefore, it is attractive to eliminate some partitions that are unlikely to be chosen as the best
partition pattern. In this paper, we focus on accelerating the search for the best quadtree
structure for CTU and RQT in HEVC intra coding. A unified method is proposed, which we
call the fast quadtree structure deciding method using histogram statistics. Using our method,
the coding complexity of HEVC can be reduced, with a slight loss in video quality.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 5, May 2015 1827

The rest of this paper is organized as follows. Section 2 summarizes and reviews the related
works. The quadtree structure of the picture partition in HEVC is introduced in Section 3. Our
proposed method is described in Section 4. The performance is demonstrated in Section 5,
while Section 6 presents the conclusions of this paper.

2. Related Work

2.1 Fast algorithm for deciding the structure of CTU
There are some existing methods focused on fast algorithms in HEVC intra coding. A basic
assumption is that a strong correlation exists between neighboring blocks in the space and time
domains. Most fast algorithms make use of this prior information in different ways.

Jiang Wei et al. [3] proposed a gradient-based fast mode decision algorithm for HEVC
intra coding. In this method, the gradient directions and histogram are used for CU size
selection. The method achieves 20% complexity reduction with a 0.74% Bjontegaard delta
rate (BD-rate) increase.

A group-based fast mode decision algorithm for intra coding [4] was proposed by
Shunqing Yan, et al. The number of intra prediction modes for RDO was reduced by grouping
the rough mode decision (RMD) modes into different rough directions. The experiment shows
that coding time was reduced by 23.52% with a 1.3% BD-rate increase.

Shen Liquan, et al. [5] proposed a fast CU size decision algorithm for intra coding. Before
codec searching for the best depth of a CU, a depth prediction is calculated using the depth of
nearby CUs (Left, Left-Up, Up, Right-Up) with a series of weighted factors. Then, the
algorithm searches specific depths based on the predicted depth. According to the
experimental result, the proposed method approaches 21.1% time savings with a 1.74%
BD-rate increase on average, compared to [6].

Shen Xiaolin et al. [7] proposed a CU splitting early termination method based on a
weighted support vector machine (SVM), which is different from the above papers. The
method chooses several features that are highly correlative to whether or not to split a CU, and
then, the selected features are used to build a good predictor of SVM, which is applied before
performing RDO on four sub-CUs.

Another paper with similar thoughts on classification is [8]. The authors assume the RDO
cost of a CU of the same size to follow a Gaussian distribution whose parameters (µ,σ) are
estimated in an online learning process. The paper reports 50.2% time savings with a 0.6%
BD-rate increase compared to HM6.0. However, the robustness of this method is not good,
which will be analyzed in Part 4.

Some early works on fast CU size decision algorithms such as [9], [3] have been
implemented in HM4.0 and HM6.0, leading to 37% and 19% time savings, respectively, with
little loss of coding efficiency.

Furthermore, a few conventional fast algorithms have been proposed based on the
H.264/AVC encoder. The work in [10] makes use of a non-normalized Haar transform for
edge detection. In [11], the sum of approximate squares difference is utilized to accelerate the
H.264 intra mode decision. The work in [12] notes and utilizes the motion homogeneity of
video to skip some unlikely modes.

2.2 Fast algorithm of deciding the structure of RQT
Fewer fast algorithms focus on the residual quadtree than on CTU. Su-Wei Teng et al.
proposed a fast mode decision for RQT [13]. In this method, the order of searching different

1828 Li et al.: Fast Quadtree Structure Decision for HEVC Intra Coding Using Histogram Statistics

TU sizes is rearranged. A TU size of 16x16 has the highest priority to be selected, followed by
8x8 and then by 32x32. The authors set two early termination conditions to accelerate the
process of searching for the best partition of RQT. As a result, the algorithm achieves up to 55%
encoding time reduction with negligible coding loss.

The author of [14] makes observations on the impact of maximum inter RQT depth for
different CU sizes and sets different fixed depths for sizes of 64x64 and 8x8 TU. For 32x32
and 16x16 TUs, two discriminant scores will be calculated to decide the depth of the current
TU. The algorithm gains a 7.2% speedup in a random access high efficiency (RAHE)
configuration and a 21.1% speedup in a low-delay configuration with only 0.03~0.035 dB
PSNR degradation.

Another early TU decision method was proposed by Kiho Choi and Euee S. Jang in [15].
The relationship between the determined TU size and the nonzero discrete cosine transform
coefficients (NDCs) was exploited. If the NDC is less than the threshold, which is set
according to the experiment, the TU will halt further RDO cost evaluation. The method was
implemented on HM 3.0 and gained 61% complexity reduction with 0.58% bitrate increasing
and 0.02 PSNR loss.

In the previous draft of HEVC, RQT structure was grouped into two categories: square
residual quadtree and nonsquare residual quadtree. In [16], the nonsquare residual quadtree
structure was finally excluded. However, the results of [13, 14], and [15] are based on the early
version of the HM. The effects of these algorithms have not been verified in the most recent
test model.

3. Quadtree Structure of Block Partition in HEVC
Fig. 1 shows the CU and TU partitioning with quadtree structure. As seen in Fig. 1, the
partition is started by a Largest CU (LCU) whose size is typically set to 64x64. During the
partitioning process, if the size of the current CU is larger than the smallest CU size, which is

Fig. 1. CU and TU partition in HEVC with quadtree structure. The solid lines represents the CU
partition, and the dotted lines represent the TU partition.

…………

Depth = 0
Size = 64x64

Depth = 1
Size = 32x32

Depth = 2
Size = 16x16

Depth = 3
 Size = 8x8

CU0

CU11 CU12

TU20

CU10 CU13

TU21 TU22 TU23

Depth = 4 Size = 4x4 Residual QuadTree

CTU QuadTree

……

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 5, May 2015 1829

usually set to 8x8, the RDO cost of the current CU and four sub-CUs is calculated and
compared to decide whether to split into sub-CUs. The RDO cost is calculated using the
following Lagrangian functional:

𝐽𝑀𝑂𝐷𝐸 = 𝐷𝑟𝑒𝑐 + 𝜆𝑀𝑂𝐷𝐸𝑅𝑟𝑒𝑐 (2)

where, for instance, Drec is the sum of squared differences (SSD) between the original block
and its reconstruction. Rrec is the number of bits used by compressing the block. If a CU is
split into four sub-CUs like the CU0 in Fig. 1, this CU will not be a leaf node of the final
quadtree. In contrast, if a CU stops splitting at its position like CU11, it will become a leaf node
of the CTU quadtree.

To reduce the complexity of RDO in intra coding, Yinji Piao in [17] proposed the Rough
Mode Search (RMS). In this method, several suboptimal candidates are selected by sorting
JRMS, which is calculated by (3).

𝐽𝑅𝑀𝑆 = 𝐷𝐻𝑆𝐴𝐷 + 𝜆𝑀𝑂𝐷𝐸𝑅𝑟𝑒𝑐 (3)

In (3), 𝐷𝐻𝑆𝐴𝐷 is the minimum absolute sum of the Hadamard Transformed coefficients of

the residual signal (HSAD), and 𝑅𝑟𝑒𝑐 is the mode bit. As a result, the smaller JRMS is, the more
likely it is that the mode will be the optimal result. After several suboptimal candidates are
identified, RDO searching is performed among the candidates selected. In the following
content, JMODE and JRMS are called COST together.

For the residual quadtree, the process of deciding the structure of RQT is similar to the one
for CTU. Typically, the TU size is from 32x32 to 4x4. When the CU size is determined, it will
be further split into TUs, as illustrated in Fig. 1. The criterion of whether to split is the value of
JMODE, which means the structure with smallest JMODE will be chosen as the best partition of
RQT.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Statistics on COST and distribution of choice of splitting or not: (a), (b) come from the JRMS
results and (c),(d),(e),(f) from the Jmode results. All of the data come from CU splitting, and the CU

size is 16x16.

1830 Li et al.: Fast Quadtree Structure Decision for HEVC Intra Coding Using Histogram Statistics

4. Fast Pattern Decision Based on Histogram Statistics

4.1 Motivation
The motivation of our method comes from [8], whose model is built on the assumption that
COST follows a Gaussian distribution. We repeated the work of [8] and performed statistical
analysis of the data on the relationship between COST and the choice of splitting. Some of the
results are shown in Fig. 2. The blue curve represents non-split CU cases, and the red curve
represents split CU cases. The X-axis shows the value of the COST in a particular interval
length, while the Y-axis shows the count of the different cases. The data in (a), (b) come from
the JRMS results, and those in (c), (d), (e), (f) come from the JMODE results. All of the data are
collected in different videos using the HEVC common test condition. [18] The statistical
length of the interval of JRMS is 200, and the length of the interval for JMODE is 50. Close
inspection of the above image will reveal that (a), (b), (c), (d) are likely to follow the Gaussian
distribution, but (e) and (f) are not a perfect approximation. To solve this problem, we build
another more precise model to predict the split probability at any COST value.

4.2 Fast Pattern Decision Based on Histogram Statistics
To overcome the weakness of the method in [8], our method divides the value of COST into
several intervals. The probability of splitting a node, whether it is a CU or TU, into four
sub-nodes in the quadtree is calculated in each interval. Thus, the following CU/TU can make
use of the results learned by previous statistics. To demonstrate our method, an experiment is
performed, and the result is shown in Fig. 3. In this experiment, the first 30 frames of
BQTerrace are encoded with the original HEVC intra coding algorithm. The RDO cost of
every CU at depth level 2 is collected. There are two kinds of action for every CU after RDO,
splitting or not splitting. We separate the RDO costs collected into two parts by these two
situations. In Fig. 3, the blue bar shows the probability density of not splitting a CU into
sub-CUs in each statistical interval. The red bar shows the probability density of splitting a CU.
The dotted green line shows the splitting probability of a CU whose COST falls into a specific

1 2 11 29 55Interval Index

Pr
ob

ab
ili

ty
 D

en
sit

y

RDO Cost 29×50

RDO Cost=28×50

Interval Index

Splitting Probability

0

1

Splitting Probability RDO Cost Interval
with non-split CU

RDO Cost Interval
with split CU

Interval Length (50)

Fig. 3. An example of isometric interval splitting. The length of intervals is 200. The dotted green

line is the splitting probability of CU in each interval.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 5, May 2015 1831

interval. The probability is calculated by equation (4)

𝑝𝑠𝑝𝑙𝑖𝑡(𝑖) = 𝐶𝑠𝑝𝑙𝑖𝑡(𝑖)
𝐶𝑠𝑝𝑙𝑖𝑡(𝑖)+𝑁𝑛𝑜−𝑠𝑝𝑙𝑖𝑡(𝑖)

 (4)

where 𝐶𝑠𝑝𝑙𝑖𝑡(𝑖) is the count of split CUs in interval i, and 𝐶𝑛𝑜−𝑠𝑝𝑙𝑖𝑡(𝑖) is the count of

non-split CUs. With this method, the green curve precisely reflects the change in probability
with the growth of JMODE. Notice that “probability of splitting” means the probability of
splitting one node into four sub-nodes. The node may be a CU or TU according to the structure
on which the method is applied.

For implementation, there are two defects in the algorithm above. Because all intervals are
equally spaced, the total number of the intervals will not be determined at the start of the
encoding process, which will lead to low efficiency in coding performance. Second, the
estimation of probability for CUs with large COST is not accurate because the number of
samples with large values is small. It takes too long to collect enough samples to make
predictions for future CUs.

In our modified method, COST is separated into three segments, as illustrated in Fig. 4.
The segment partition is defined by (5)

𝐶𝑂𝑆𝑇 ∈ �
𝑆𝑒𝑔. 𝐼 0 < 𝐶𝑂𝑆𝑇 ≤ 𝑇ℎ1
𝑆𝑒𝑔. 𝐼𝐼 𝑇ℎ1 < 𝐶𝑂𝑆𝑇 ≤ 𝑇ℎ2
𝑆𝑒𝑔. 𝐼𝐼𝐼 𝑇ℎ2 < 𝐶𝑂𝑆𝑇

 (5)

Table 1. Values of Th1, Th2, Length1, Length2 for Acceleration Algorithm in deciding the CTU

structure
 CU size Th1 Th2 Length1 Length2

𝐽𝑅𝑀𝑆
16x16 8000 16000 200 500
32x32 40000 60000 2000 5000
64x64 70000 150000 3500 20000

 𝐽𝑀𝑂𝐷𝐸
16x16 16000 48000 400 800
32x32 60000 180000 1500 5000
64x64 120000 360000 3000 10000

Table 2. Values of Th1, Th2, Length1, Length2 for Acceleration Algorithm in deciding the RQT

structure
 TU size Th1 Th2 Length1 Length2

 𝐽𝑀𝑂𝐷𝐸
8x8 5000 15000 200 1000

16x16 20000 60000 1000 2000
32x32 80000 240000 4000 8000

In Segments I and II, the length of the intervals is set differently. In most cases, samples in

Segment I vary more drastically than samples in Segment II, and fewer samples belong to
Segment II than to Segment I. According to the fact observed above, we set Length1 smaller
than Length2, which ensures a more accurate probability estimation. In Segment III, all of the
samples are counted in one interval because the number of samples in this segment is much
smaller than in the other two segments. Another reason for using only one interval is that the
trend of the rate between splitting and non-splitting varies slowly in this section. Almost all of
the CUs/TUs in this interval will choose splitting as the best strategy. The values of Th1, Th2,

1832 Li et al.: Fast Quadtree Structure Decision for HEVC Intra Coding Using Histogram Statistics

Length1, and Length2 for different CU and TU sizes are listed in Table 1 and Table 2, which
are our empirical values.

 To predict whether a node in the quadtree needs to be split into four sub-nodes, the
probability of splitting must be known. In our proposed method, the algorithm is divided into
two parts, the probability-estimating stage and the predicting stage. During the overall
encoding process, an estimating-predicting flag (EPF) is set for every statistical interval.
When EPF is E, the correlative interval is marked as the estimating stage; otherwise, when
EPF is P, the interval is marked as the predicting stage. At the beginning of the encoding, all of
the EPFs are set to E.

When the estimating stage of an interval begins, the current node, which is probably CU or
TU, undergoes RDO, and the same process operates for its four sub-nodes if the CU/TU does
not reach its MaxDepth. After the partition is finally determined, the depth and the COST of
each level will be stored in a container that is set at the beginning of the estimating stage. The
size of container Slearn is a crucial parameter. When a small size is set, the probability estimate
will be inaccurate with a small number of samples. However, if the size is too large, because
video content is changing constantly, a large statistical bias may exist between the learning
samples and the predicting samples. Furthermore, if too many samples are learned, encoding
efficiency will be lost. In our experiment, Slearn is set to 50 empirically. Once the number of
learned samples in an interval reaches the size of the container, the probability of splitting for
this interval will be calculated using equation (4). The probability will be stored in a
probability container. Then, the stage of this interval is set to P.

When the predicting stage for an interval begins, the algorithm will perform the accelerating
algorithm to decide the CTU and RQT structure according to the estimated probability of
splitting. In this stage, another parameter m is used to control the number of CUs/TUs, which
is under the predicting stage in the interval. In one predicting stage, the upper limit of predicted
CUs/TUs, Spredict, is defined as follows.

𝑆𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = 𝑆𝑙𝑒𝑎𝑟𝑛 × 𝑚 (6)

If the count reaches the upper limit, the stage of the interval is set to E, and the probability

of this interval is reset to wait for the next update.

1 2 11 23

RD
O

Co
st

 S
am

pl
el

 C
ou

nt

Splitting Probability RDO Cost Interval
with non-split CU

RDO Cost Interval
with split CU

Length1
Length2

Th2

Th1

17 18 24(Interval Index)

Fig. 4. Splitting ProbabilityStatistics using histogram.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 5, May 2015 1833

4.3 Early splitting and early pruning in deciding the CTU and RQT structure in
intra coding

In this part, the above method will be used to accelerate searching for the best CTU structure in
intra coding. As mentioned in Part 3, whether a CU needs to be split into four sub-CUs is
determined by JMODE of the current CU and sub-CUs. The choice that leads to a smaller JMODE
will be chosen as the strategy for the current CU. Thus, an assumption is made that CUs with
small values of JMODE tend not to be split, while CUs with large values of JMODE tend to be split.
Based on this assumption, we design early pruning (EP) and early splitting (ES) algorithms to
decide the structure of CTU for intra coding.

EP is the process that skips calculating the JMODE of four sub-CUs and makes the current
CU the leaf node of the CTU quadtree when the splitting probability of the current CU is below
the threshold α. Coding complexity will be reduced because RDO will not be performed on
part of the partition.

ES is slightly more complicated than EP. In our proposed method, the statistical analysis is
applied on both JMODE and JRMS. The splitting probability is estimated on these two kinds of
COST. When the stage of the interval is P, two splitting probabilities exist. After calculating
the JRMS of the CU, the proposed method will look for the splitting probability derived from the
statistics for JRMS. If the probability is larger than the threshold 𝛽, the algorithm will skip
computing JMODE for the current CU and set JMODE Max directly. When the sum of the four
JMODE values of sub-CUs is computed, the codec will definitely choose the split as the best
choice for the current CU.

In the predicting stage, if the current CU does not perform either ES or EP, the full RDO
process will be performed. When the encoding process of the current CU goes into the deeper
level, the ES and EP test will be continued until the size of the current CU is 8x8.

However, there exists an unsolved problem in the ES algorithm. Consider the situation
illustrated in Fig. 5. In this figure, CU1 is selected to perform early splitting when the smallest
JRMS is calculated. The calculation for JMODE of CU1 is skipped and set to Max to perform ES.
CU0 is a normal CU for which no acceleration algorithm is loaded. It is unreasonable to

…………

Depth = 0
Size = 64x64

Depth = 1
Size = 32x32

Depth = 2
Size = 16x16

Depth = 3
Size = 8x8

CU performs
early splitting

CU performs
early pruning Normal CU

CU0

CU1 CU2

CU3

Fig. 5. An example of CU partitioning. LCU size: 64x64 MaxDepth: 3

1834 Li et al.: Fast Quadtree Structure Decision for HEVC Intra Coding Using Histogram Statistics

compare the JMODE of CU0 and the sum of the JMODE values of four sub-CUs because the JMODE
of CU1 is Max. The same situation recurs in CU1 and CU3. To solve this problem, we defined
two kinds of JMODE for a CU: JMODE-split and JMODE-pruning. When a CU is determined to perform
ES, JMODE-split is set to Max, and JMODE-pruning is set to the sum of the JMODE-pruning values of the
four sub-CUs. In a normal CU or a CU that performs early pruning, JMODE-split and JMODE-pruning
are set to the original JMODE. Because all of the CUs in depth 3 are normal CUs, for which
JMODE-pruning is the original JMODE, every JMODE-pruning of CU in depth 2 and depth 1 can be
calculated recursively. When a CU that has performed ES is used as one of the four sub-CUs to
calculate the sum of the JMODE of the four, JMODE-pruning is used instead of JMODE-split to calculate
the sum.

The proposed method is also applied to searching for the best partition for RQT. The
structure of RQT is an extension of the CTU, as shown in Fig. 1. The root node of the RQT is
a leaf node of the CTU quadtree. When deciding whether a TU needs to be split, the JMODE
values of the current TU and four sub-TUs are compared, as in CU splitting. The assumption
that CUs with large COST values tend to be split and vice versa can be generalized in RQT.
Early pruning will be performed based on the assumption that the probability of splitting,
which comes from the statistics for JMODE of TU, is smaller than the threshold γ. If EP is
performed, the current TU will skip partitioning in the deeper level and set the TU of the leaf
node of the RQT.

4.4 The total algorithm
The flow chart of the full algorithm is shown in Fig. 6. The left part shows the flow in the CU
level, and the right part shows the process in the TU level.

Do RMS Searching

Learning stage?Record the JRMS

Perform
early spliting?

Perform RDO
searching

N

Y

Y

N

Learning stage?

N

Record the JMODE

Perform
early pruning?

Y

N

Start intra
encoding

Perform intra process
in deeper CU level

Y

End the intra
process in this CU

End the intra
process in this CU

Start TU partition
searching

Calculate r-d cost(JTU)
of current level

Learning stage?Record the JTU Y

Perform
early pruning?

End the intra
process in this TU

N

Y

Searching partition in
deeper level

N

End

Fig. 6. The flow chart of the proposed method

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 5, May 2015 1835

5. Simulation Results and Analysis
The proposed method is implemented based on HM10. The default algorithm in HM10 and the
main profile are used as a comparison. The test condition strictly follows the common test
conditions defined in [18]. The main parameters of the intra configuration of the HEVC main
profile are listed in Table 3. Slearn, which is mentioned in (6), is set to 50, and m is set the frame
rate of sequence.

Fig. 7 shows the performance results of different methods of accelerating, including early
pruning of CU, early splitting of CU and early pruning of TU. Three sequences (ParkScene,
BasketballDrill, and BasketballPass) are used in this test, which come from Class B to Class D.
The data in Fig. 7 are the average results of the three sequences. The different thresholds are
set to observe how the RD performance changes and at what level the most time will be saved.

Table 3. The main configuration parameters
Parameters Value
MaxCUSize 64x64
MaxCUDepth 4
MaxTUSize 32x32
MinTUSize 4x4
MaxTUDepth 3
QP 22, 27, 32, 37

(a) (b)

(c)

Fig. 7. Performance comparison of different threshold values.

In (a), only early CU pruning is performed. In (b), early splitting is performed,
and in (c), early TU pruning is performed.

1836 Li et al.: Fast Quadtree Structure Decision for HEVC Intra Coding Using Histogram Statistics

The reduction of complexity will be calculated by equation (7).

∆𝑇𝑖𝑚𝑒% = (𝑇𝐻𝑀10−𝑇𝑝𝑟𝑜𝑝.)

𝑇𝐻𝑀10
 (7)

In Fig. 7, early pruning of CU turns out to be the best accelerating method because it

obtains the greatest time saving with the smallest BD-rate increase compared to the other two
methods. Early TU pruning provides consistent performance because with the increasing of
the threshold, little change occurs in the reduction of complexity and BD-rate increment.

The overall results of the algorithm in intra coding, including EP of CU, ES of CU, and EP
of TU, are listed in Table 4. The thresholds of 𝛼,𝛽, 𝛾 are set to 0.25, 0.8, and 0.2. The
reduction of complexity is represented by the increase in BD-rate. A trend can be obtained
showing that the performance of the proposed method improves with an increase in the size of

Table 4. Summary results of the proposed method for sequences in
Class A to Class E: 𝛼,𝛽, 𝛾 are set to 0.25, 0.8, and 0.2.

Class & Sequences ∆Time Ave. ∆BD-rate Ave.

A

NebutaFestival 73.8%

60.6%

0.52%

1.25% PeopleOnStreet 35.4% 0.97%
SteamLocomotiveTrain 72.6% 2.33%

Traffic 41.3% 1.17%

B

BasketballDrive 56.6%

49.7%

1.60%

1.47%
BQTerrace 38.9% 1.10%

Cactus 40.8% 1.10%
Kimono 74.7% 2.89%

ParkScene 37.4% 0.65%

C

BasketballDrill 33.0%

33.0%

0.77%

0.67% BQMall 34.7% 0.90%
PartyScene 31.6% 0.33%

RaceHorsesC 32.7% 0.66%

D

BasketballPass 38.4%

31.9%

0.84%

0.50% BlowingBubbles 30.5% 0.23%
BQSquare 31.0% 0.43%

RaceHorses 27.9% 0.52%

E
FourPeople 40.6%

49.8%
1.21%

1.53% Johnny 56.2% 1.93%
KristenAndSara 52.6% 1.45%

 Total 44.0% 1.08%

Table 5. Performance comparison between other fast algorithms for Intra coding and our proposed
method

 [3] [4] [19] Proposed Method
∆𝑅 ∆𝑇 ∆𝑅 ∆𝑇 ∆𝑅 ∆𝑇 ∆𝑅 ∆𝑇

Class A 0.6% 20% 1.0% 22% 2.8% 55% 1.2% 60%
Class B 0.7% 25% 0.8% 21% 3.1% 56% 1.4% 49%
Class C 0.7% 19% 1.5% 25% 1.6% 56% 0.6% 33%
Class D 0.9% 20% 1.7% 24% 1.4% 53% 0.5% 31%
Class E 0.9% 19% 1.3% 23% 3.5% 60% 1.5% 49%
Ave. 0.76% 20.6% 1.26% 23.0% 2.48% 56.0% 1.04% 44.4%

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 5, May 2015 1837

the sequences. When compressing sequences in Class D, the time is reduced by 31.9% while
the BD-rate increase is 0.71%. However, when compressing the sequence in Class A, the
proposed method achieves 60.6% time savings with a BD-rate increase of 1.75%, which is
slightly higher than the previous result.

The performance of our algorithm surpassed the previous works [3, 4, 19] in different
aspects. The performance comparison is shown in Table 5. ∆R represents the BD-rate increase,
and ∆T is the reduction in complexity. Among the results, Jiang’s work [3] has the lowest
BD-rate increase; however, its performance is the worst, with only a 20.6% reduction in
complexity. Sun Heming’s work [19] has the best time performance at the cost of a high
BD-rate increase. On average, the method in [3] provides 20.6%/0.76=27% encoding time
reduction per 1% BD-rate increase. The corresponding values for [4, 19] and our proposed
method are 18.25%, 22.58%, and 42.69%, respectively, which clearly shows that our proposed
method outperforms the other methods.

6. Conclusion
In this paper, we have proposed a fast quadtree structure deciding method for intra coding of
HEVC. The overall algorithm is separated into two parts, the learning stage and the predicting
stage. In the learning stage, a probability model between splitting the node and the COST of
CU/TU is constructed. When performing a non-optimized intra coding algorithm, the COST
of different CU/TU sizes is separated into different intervals, and the probability of splitting of
the current node is estimated. In the predicting stage, thresholds are set to the splitting
probability calculated in the learning stage. Then, ES and EP will perform to accelerate the
process of deciding the structure of CTU and RQT. The experimental results show that the
proposed method speeds up the HEVC intra coding by 44.4% at the cost of a 1.08% BD-rate
increase on average.

Acknowlegement
This work is supported by innovation fund for graduate students provided by school of
information and communication engineering, Beijing Univ. of Posts and Telecomm. 2015.

References
[1] J Ohm, Gary J Sullivan, Heiko Schwarz, Thiow Keng Tan, and Thomas Wiegand, “Comparison of

the coding efficiency of video coding standards—including high efficiency video coding (HEVC),”
Circuits and Systems for Video Technology, IEEE Transactions on, vol. 22, pp. 1669-1684, 2012.
Article (CrossRef Link)

[2] G.J Sullivan, J.Ohm, W.Han, and T. Wiegand, “Overview of the high efficiency video coding
(HEVC) standard,” Circuits and Systems for Video Technology, IEEE Transactions on, vol. 22, pp.
1649-1668, 2012. Article (CrossRef Link)

[3] W.Jiang, Hanjie Ma, and Yaowu Chen, “Gradient based fast mode decision algorithm for intra
prediction in HEVC,” in Proc. of Consumer Electronics, Communications and Networks
(CECNet), 2012 2nd International Conference on, pp. 1836-1840, 2012, Article (CrossRef Link)

[4] S. Yan, L. Hong, W. He, and Q. Wang, “Group-based fast mode decision algorithm for intra
prediction in HEVC,” in Proc. of Signal Image Technology and Internet Based Systems (SITIS),
2012 Eighth International Conference on, pp. 225-229, 2012, Article (CrossRef Link)

[5] L.Shen, Z. Zhang, and P. An, “Fast CU size decision and mode decision algorithm for HEVC intra
coding,” Consumer Electronics, IEEE Transactions on, vol. 59, pp. 207-213, 2013.

http://dx.doi.org/10.1109/TCSVT.2012.2221192
http://dx.doi.org/10.1109/TCSVT.2012.2221191
http://dx.doi.org/10.1109/CECNet.2012.6201851
http://dx.doi.org/10.1109/SITIS.2012.41

1838 Li et al.: Fast Quadtree Structure Decision for HEVC Intra Coding Using Histogram Statistics

Article (CrossRef Link)
[6] L. Zhao, L. Zhang, S. Ma, and D. Zhao, “Fast mode decision algorithm for intra prediction in

HEVC,” Visual Communications and Image Processing (VCIP), 2011 IEEE, pp. 1-4, 2011,
Article (CrossRef Link)

[7] X. Shen and L. Yu, “CU splitting early termination based on weighted SVM,” EURASIP Journal
on Image and Video Processing, vol. 2013, pp. 1-11, 2013. Article (CrossRef Link)

[8] S. Cho and M. Kim, “Fast CU splitting and pruning for suboptimal CU partitioning in HEVC intra
coding,” 2013. Article (CrossRef Link)

[9] K. Choi and E. S Jang, “Fast coding unit decision method based on coding tree pruning for high
efficiency video coding,” Optical Engineering, vol. 51, pp. 030502-1-030502-3, 2012.
Article (CrossRef Link)

[10] H. Li, K. N. Ngan, and Z. Wei, “Fast and efficient method for block edge classification and its
application in H. 264/AVC video coding,” Circuits and Systems for Video Technology, IEEE
Transactions on, vol. 18, pp. 756-768, 2008. Article (CrossRef Link)

[11] Y. Chao, K. Lin, B. Liu, and J. Yang, “An approximate square criterion for H. 264/AVC intra
mode decision,” in Proc. of Multimedia and Expo, 2008 IEEE International Conference on, pp.
333-336, 2008, Article (CrossRef Link)

[12] F. Pan, X. Lin, S. Rahardja, K. Pang Lim, ZG Li, Dajun Wu, et al., “Fast mode decision algorithm
for intraprediction in H. 264/AVC video coding,” Circuits and Systems for Video Technology,
IEEE Transactions on, vol. 15, pp. 813-822, 2005. Article (CrossRef Link)

[13] S. Teng, H. Hang, and Yi-Fu Chen, “Fast mode decision algorithm for residual quadtree coding in
HEVC,” in Visual Communications and Image Processing (VCIP), 2011 IEEE, pp. 1-4, 2011,
Article (CrossRef Link)

[14] Y. Zhang and M. Zhao, “An adaptive RQT mode selection algorithm for HEVC,” in Proc. of
Image and Signal Processing (CISP), 2012 5th International Congress on, pp. 173-177, 2012,
Article (CrossRef Link)

[15] K. Choi and E. S Jang, “Early TU decision method for fast video encoding in high efficiency video
coding,” Electronics letters, vol. 48, pp. 689-691, 2012. Article (CrossRef Link)

[16] B. Bross, W. Han, J. Ohm, Gary J Sullivan, and Thomas Wiegand, “High efficiency video coding
(HEVC) text specification draft 8,” JCTVC-J1003, 2012.

[17] Y Piao, J Min, and J Chen, “Encoder improvement of unified intra prediction,” JCTVC-C207,
2010.

[18] F Bossen and HM Common, “test conditions and software reference configurations”
JCTVC-L1100, Jan, 2013.

[19] H. Sun, D. Zhou, and S. Goto, “A low-complexity hevc intra prediction algorithm based on level
and mode filtering,” in Multimedia and Expo (ICME), 2012 IEEE International Conference on, pp.
1085-1090, 2012. Article (CrossRef Link)

.

http://dx.doi.org/10.1109/TCE.2013.6490261
http://dx.doi.org/10.1109/VCIP.2011.6115979
http://dx.doi.org/10.1186/1687-5281-2013-4
http://dx.doi.org/10.1109/TCSVT.2013.2249017
http://dx.doi.org/10.1117/1.OE.51.3.030502
http://dx.doi.org/10.1109/TCSVT.2008.918778
http://dx.doi.org/10.1109/ICME.2008.4607439
http://dx.doi.org/10.1109/TCSVT.2005.848356
http://dx.doi.org/10.1109/VCIP.2011.6116062
http://dx.doi.org/10.1109/CISP.2012.6469679
http://dx.doi.org/10.1049/el.2012.0277
http://dx.doi.org/10.1109/ICME.2012.4

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 5, May 2015 1839

Yuchen Li is a Ph.D. student in the Wireless Theories and Technologies Lab, Beijing
University of Posts and Telecommunications (BUPT), China. He received his B.E. degree in
Communication Engineering from BUPT in 2012. His current research is focused on video
coding and multimedia communication.

Yitong Liu received her M.S degree in communication engineering from BUPT, China, in
2007. She is a Ph.D. student at the School of Information and Communication Engineering in
BUPT. Her research includes multimedia communication and QoE of streaming services.

Hongwen Yang received his Ph.D. degree in communication engineering from BUPT in
2005. Prof. Yang is currently the director of the Wireless Communication Center in the
School of Information and Communication Engineering at BUPT. His research mainly
focuses on wireless physical aspects.

Dcheng Yang received his Ph.D. degree in communication engineering from BUPT in
1988 and is currently a professor in BUPT. He is also the director of the WT&T Lab at BUPT.
Since 1988, he has engaged in studies on communication systems. His recent interests lie in
wireless transmission techniques and systems.

	1. Introduction
	2. Related Work
	2.1 Fast algorithm for deciding the structure of CTU
	2.2 Fast algorithm of deciding the structure of RQT

	3. Quadtree Structure of Block Partition in HEVC
	4. Fast Pattern Decision Based on Histogram Statistics
	4.1 Motivation
	4.2 Fast Pattern Decision Based on Histogram Statistics
	4.3 Early splitting and early pruning in deciding the CTU and RQT structure in intra coding
	4.4 The total algorithm

	5. Simulation Results and Analysis
	6. Conclusion
	Acknowlegement
	References

