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Abstract 
 

The final draft of the latest video coding standard, High Efficiency Video Coding (HEVC), 
was approved in January 2013. The coding efficiency of HEVC surpasses its predecessor, 
H.264/MPEG-4 Advanced Video Coding (AVC), by using only half of the bitrate to encode 
the same sequence with similar quality. However, the complexity of HEVC is sharply 
increased compared to H.264/AVC. In this paper, a method is proposed to decrease the 
complexity of intra coding in HEVC. Early pruning and an early splitting strategy are applied 
to the quadtree structure of coding tree units (CTU) and residual quadtree (RQT). According 
to our experiment, when our method is applied to sequences from Class A to Class E, the 
coding time is decreased by 44% at the cost of a 1.08% Bjontegaard delta rate (BD-rate) 
increase on average.  
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1. Introduction 

The state-of-the-art video coding standard, High Efficiency Video Coding (HEVC), is the 
current joint video coding standardization project of the ITU-T Video Coding Experts Group 
and the ISO/IEC Moving Picture Experts Group. HEVC is a typical hybrid video coder, which 
means it uses intra and inter frames to reduce spatial and temporal redundancy. However, 
almost all parts of the encoder have been improved compared to H.264/MPEG-4 Advanced 
Video Coding (H.264/AVC), including a new picture segment method, a finer intra searching 
scheme using 35 directional modes, a new sample adaptive offset (SAO) filter combined with 
the deblocking filter, and a temporal motion vector prediction scheme (TMVP). With these 
new features, HEVC doubles the compression ratio at the same level of video quality 
compared to H.264/AVC. According to the experimental results in [1], the high compression 
ratio of HEVC mainly benefits from the larger coding tree unit (CTU) size and transform unit 
(TU) size.  

The CTU is the basic unit for performing further splitting and is similar to micro blocks 
(MB) in H.264/AVC. The size of the CTU is 64x64, 32x32, or 16x16 [2] according to the 
content of the video, where 64x64 is a typical setting for most of the testing sequences [2]. To 
extend the adaptation of the partition, a CTU is allowed to split into four equal pieces 
recursively until the smallest size of partition is reached, which is usually set to 8x8. The 
partitioning process leads to a quadtree CTU structure, and the leaf node of the quadtree is 
called the coding unit (CU). A CU is the basic unit for further splitting into prediction units 
(PU) and transform units (TU). To decide whether a CU needs to split into four sub-CUs, 
Rate-distortion Optimization (RDO) will be conducted for the current CU and its four 
sub-CUs, from which two costs will be obtained. One represents the condition of splitting the 
current CU. The other stands for no-split. HEVC will choose the way that leads to a smaller 
cost for the current CU. 

For the residual coding, HEVC divides the CUs recursively into TUs, which is the basic 
unit for transform coding. The partitioning process is similar to what is done in CTU. The 
structure of the recursive partition in deciding TU size is called the residual quadtree (RQT). 
When the CTU structure is determined, the RQT will set each CU as the root node and search 
for the best TU partition at each depth. Typically, the max depth of RQT in intra coding is set 
to 3, and the TU size is set to 32x32, 16x16, 8x8, or 4x4 [2]. 

Although larger sizes of CTUs and TUs offer a great benefit in improving the coding 
efficiency, a heavy computation burden is presented by searching for the best quadtree pattern 
at each depth. An experiment in [1] shows that if the maximum size of a CU is limited to 
16x16, then the encoding time will reduce to 58% of the origin time, and  if the CTU size is 
64x64 and MaxDepth is 3, the number of all possible CTU partitions is calculated by the 
following equation. 

 
1 + 1 + 𝑃44 + 𝑃44 × 𝑃44 = 602                                          (1) 

 
The analysis above presents it is the quadtree structure in HEVC brings huge complexity. 

Therefore, it is attractive to eliminate some partitions that are unlikely to be chosen as the best 
partition pattern. In this paper, we focus on accelerating the search for the best quadtree 
structure for CTU and RQT in HEVC intra coding. A unified method is proposed, which we 
call the fast quadtree structure deciding method using histogram statistics. Using our method, 
the coding complexity of HEVC can be reduced, with a slight loss in video quality. 
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The rest of this paper is organized as follows. Section 2 summarizes and reviews the related 
works. The quadtree structure of the picture partition in HEVC is introduced in Section 3. Our 
proposed method is described in Section 4. The performance is demonstrated in Section 5, 
while Section 6 presents the conclusions of this paper. 

2. Related Work 

2.1 Fast algorithm for deciding the structure of CTU 
There are some existing methods focused on fast algorithms in HEVC intra coding. A basic 
assumption is that a strong correlation exists between neighboring blocks in the space and time 
domains. Most fast algorithms make use of this prior information in different ways. 

Jiang Wei et al. [3] proposed a gradient-based fast mode decision algorithm for HEVC 
intra coding. In this method, the gradient directions and histogram are used for CU size 
selection. The method achieves 20% complexity reduction with a 0.74% Bjontegaard delta 
rate (BD-rate) increase.  

A group-based fast mode decision algorithm for intra coding [4] was proposed by 
Shunqing Yan, et al. The number of intra prediction modes for RDO was reduced by grouping 
the rough mode decision (RMD) modes into different rough directions. The experiment shows 
that coding time was reduced by 23.52% with a 1.3% BD-rate increase. 

Shen Liquan, et al. [5] proposed a fast CU size decision algorithm for intra coding. Before 
codec searching for the best depth of a CU, a depth prediction is calculated using the depth of 
nearby CUs (Left, Left-Up, Up, Right-Up) with a series of weighted factors. Then, the 
algorithm searches specific depths based on the predicted depth. According to the 
experimental result, the proposed method approaches 21.1% time savings with a 1.74% 
BD-rate increase on average, compared to [6]. 

Shen Xiaolin et al. [7] proposed a CU splitting early termination method based on a 
weighted support vector machine (SVM), which is different from the above papers. The 
method chooses several features that are highly correlative to whether or not to split a CU, and 
then, the selected features are used to build a good predictor of SVM, which is applied before 
performing RDO on four sub-CUs. 

Another paper with similar thoughts on classification is [8]. The authors assume the RDO 
cost of a CU of the same size to follow a Gaussian distribution whose parameters (µ,σ) are 
estimated in an online learning process. The paper reports 50.2% time savings with a 0.6% 
BD-rate increase compared to HM6.0. However, the robustness of this method is not good, 
which will be analyzed in Part 4. 

Some early works on fast CU size decision algorithms such as [9], [3] have been 
implemented in HM4.0 and HM6.0, leading to 37% and 19% time savings, respectively, with 
little loss of coding efficiency. 

Furthermore, a few conventional fast algorithms have been proposed based on the 
H.264/AVC encoder. The work in [10] makes use of a non-normalized Haar transform for 
edge detection. In [11], the sum of approximate squares difference is utilized to accelerate the 
H.264 intra mode decision. The work in [12] notes and utilizes the motion homogeneity of 
video to skip some unlikely modes. 

2.2 Fast algorithm of deciding the structure of RQT 
Fewer fast algorithms focus on the residual quadtree than on CTU. Su-Wei Teng et al. 
proposed a fast mode decision for RQT [13]. In this method, the order of searching different 
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TU sizes is rearranged. A TU size of 16x16 has the highest priority to be selected, followed by 
8x8 and then by 32x32. The authors set two early termination conditions to accelerate the 
process of searching for the best partition of RQT. As a result, the algorithm achieves up to 55% 
encoding time reduction with negligible coding loss. 

The author of [14] makes observations on the impact of maximum inter RQT depth for 
different CU sizes and sets different fixed depths for sizes of 64x64 and 8x8 TU. For 32x32 
and 16x16 TUs, two discriminant scores will be calculated to decide the depth of the current 
TU. The algorithm gains a 7.2% speedup in a random access high efficiency (RAHE) 
configuration and a 21.1% speedup in a low-delay configuration with only 0.03~0.035 dB 
PSNR degradation. 

Another early TU decision method was proposed by Kiho Choi and Euee S. Jang in [15]. 
The relationship between the determined TU size and the nonzero discrete cosine transform 
coefficients (NDCs) was exploited. If the NDC is less than the threshold, which is set 
according to the experiment, the TU will halt further RDO cost evaluation. The method was 
implemented on HM 3.0 and gained 61% complexity reduction with 0.58% bitrate increasing 
and 0.02 PSNR loss. 

In the previous draft of HEVC, RQT structure was grouped into two categories: square 
residual quadtree and nonsquare residual quadtree. In [16], the nonsquare residual quadtree 
structure was finally excluded. However, the results of [13, 14], and [15] are based on the early 
version of the HM. The effects of these algorithms have not been verified in the most recent 
test model. 

3. Quadtree Structure of Block Partition in HEVC 
Fig. 1 shows the CU and TU partitioning with quadtree structure. As seen in Fig. 1, the 
partition is started by a Largest CU (LCU) whose size is typically set to 64x64. During the 
partitioning process, if the size of the current CU is larger than the smallest CU size, which is 

 
 

Fig. 1. CU and TU partition in HEVC with quadtree structure. The solid lines represents the CU 
partition, and the dotted lines represent the TU partition. 
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usually set to 8x8, the RDO cost of the current CU and four sub-CUs is calculated and 
compared to decide whether to split into sub-CUs. The RDO cost is calculated using the 
following Lagrangian functional: 

 
𝐽𝑀𝑂𝐷𝐸 = 𝐷𝑟𝑒𝑐 + 𝜆𝑀𝑂𝐷𝐸𝑅𝑟𝑒𝑐                                                  (2) 

 
where, for instance, Drec is the sum of squared differences (SSD) between the original block 
and its reconstruction. Rrec is the number of bits used by compressing the block. If a CU is 
split into four sub-CUs like the CU0 in Fig. 1, this CU will not be a leaf node of the final 
quadtree. In contrast, if a CU stops splitting at its position like CU11, it will become a leaf node 
of the CTU quadtree.  

To reduce the complexity of RDO in intra coding, Yinji Piao in [17] proposed the Rough 
Mode Search (RMS). In this method, several suboptimal candidates are selected by sorting 
JRMS, which is calculated by (3).  

 
𝐽𝑅𝑀𝑆 = 𝐷𝐻𝑆𝐴𝐷 + 𝜆𝑀𝑂𝐷𝐸𝑅𝑟𝑒𝑐                                           (3) 

 
In (3), 𝐷𝐻𝑆𝐴𝐷 is the minimum absolute sum of the Hadamard Transformed coefficients of 

the residual signal (HSAD), and 𝑅𝑟𝑒𝑐 is the mode bit. As a result, the smaller JRMS is, the more 
likely it is that the mode will be the optimal result. After several suboptimal candidates are 
identified, RDO searching is performed among the candidates selected. In the following 
content, JMODE and JRMS are called COST together. 

For the residual quadtree, the process of deciding the structure of RQT is similar to the one 
for CTU. Typically, the TU size is from 32x32 to 4x4. When the CU size is determined, it will 
be further split into TUs, as illustrated in Fig. 1. The criterion of whether to split is the value of 
JMODE, which means the structure with smallest JMODE will be chosen as the best partition of 
RQT. 

 
(a)                                                (b)                                                (c) 

 
(d)                                                 (e)                                                (f) 

 
Fig. 2. Statistics on COST and distribution of choice of splitting or not: (a), (b) come from the JRMS 
results and (c),(d),(e),(f) from the Jmode results. All of the data come from CU splitting, and the CU 

size is 16x16. 
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4. Fast Pattern Decision Based on Histogram Statistics 

4.1 Motivation 
The motivation of our method comes from [8], whose model is built on the assumption that 
COST follows a Gaussian distribution. We repeated the work of [8] and performed statistical 
analysis of the data on the relationship between COST and the choice of splitting. Some of the 
results are shown in Fig. 2. The blue curve represents non-split CU cases, and the red curve 
represents split CU cases. The X-axis shows the value of the COST in a particular interval 
length, while the Y-axis shows the count of the different cases. The data in (a), (b) come from 
the JRMS results, and those in (c), (d), (e), (f) come from the JMODE results. All of the data are 
collected in different videos using the HEVC common test condition. [18] The statistical 
length of the interval of JRMS is 200, and the length of the interval for JMODE is 50. Close 
inspection of the above image will reveal that (a), (b), (c), (d) are likely to follow the Gaussian 
distribution, but (e) and (f) are not a perfect approximation. To solve this problem, we build 
another more precise model to predict the split probability at any COST value.  

4.2 Fast Pattern Decision Based on Histogram Statistics 
To overcome the weakness of the method in [8], our method divides the value of COST into 
several intervals. The probability of splitting a node, whether it is a CU or TU, into four 
sub-nodes in the quadtree is calculated in each interval. Thus, the following CU/TU can make 
use of the results learned by previous statistics. To demonstrate our method, an experiment is 
performed, and the result is shown in Fig. 3. In this experiment, the first 30 frames of 
BQTerrace are encoded with the original HEVC intra coding algorithm. The RDO cost of 
every CU at depth level 2 is collected. There are two kinds of action for every CU after RDO, 
splitting or not splitting. We separate the RDO costs collected into two parts by these two 
situations. In Fig. 3, the blue bar shows the probability density of not splitting a CU into 
sub-CUs in each statistical interval. The red bar shows the probability density of splitting a CU. 
The dotted green line shows the splitting probability of a CU whose COST falls into a specific 
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Fig. 3. An example of isometric interval splitting. The length of intervals is 200. The dotted green 
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interval. The probability is calculated by equation (4) 
 

𝑝𝑠𝑝𝑙𝑖𝑡(𝑖) = 𝐶𝑠𝑝𝑙𝑖𝑡(𝑖)
𝐶𝑠𝑝𝑙𝑖𝑡(𝑖)+𝑁𝑛𝑜−𝑠𝑝𝑙𝑖𝑡(𝑖)

                                               (4) 

 
where 𝐶𝑠𝑝𝑙𝑖𝑡(𝑖) is the count of split CUs in interval i, and 𝐶𝑛𝑜−𝑠𝑝𝑙𝑖𝑡(𝑖) is the count of 

non-split CUs. With this method, the green curve precisely reflects the change in probability 
with the growth of JMODE. Notice that “probability of splitting” means the probability of 
splitting one node into four sub-nodes. The node may be a CU or TU according to the structure 
on which the method is applied. 

For implementation, there are two defects in the algorithm above. Because all intervals are 
equally spaced, the total number of the intervals will not be determined at the start of the 
encoding process, which will lead to low efficiency in coding performance. Second, the 
estimation of probability for CUs with large COST is not accurate because the number of 
samples with large values is small. It takes too long to collect enough samples to make 
predictions for future CUs. 

In our modified method, COST is separated into three segments, as illustrated in Fig. 4. 
The segment partition is defined by (5)  

 

𝐶𝑂𝑆𝑇 ∈  �
𝑆𝑒𝑔. 𝐼            0 < 𝐶𝑂𝑆𝑇 ≤ 𝑇ℎ1
𝑆𝑒𝑔. 𝐼𝐼      𝑇ℎ1 < 𝐶𝑂𝑆𝑇 ≤ 𝑇ℎ2
𝑆𝑒𝑔. 𝐼𝐼𝐼     𝑇ℎ2 < 𝐶𝑂𝑆𝑇             

                                     (5) 

 
Table 1. Values of Th1, Th2, Length1, Length2 for Acceleration Algorithm in deciding the CTU 

structure  
 CU size Th1 Th2 Length1 Length2 

𝐽𝑅𝑀𝑆 
16x16 8000 16000 200 500 
32x32 40000 60000 2000 5000 
64x64 70000 150000 3500 20000 

 𝐽𝑀𝑂𝐷𝐸 
16x16 16000 48000 400 800 
32x32 60000 180000 1500 5000 
64x64 120000 360000 3000 10000 

 
Table 2. Values of Th1, Th2, Length1, Length2 for Acceleration Algorithm in deciding the RQT 

structure  
 TU size Th1 Th2 Length1 Length2 

 𝐽𝑀𝑂𝐷𝐸 
8x8 5000 15000 200 1000 

16x16 20000 60000 1000 2000 
32x32 80000 240000 4000 8000 

 
In Segments I and II, the length of the intervals is set differently. In most cases, samples in 

Segment I vary more drastically than samples in Segment II, and fewer samples belong to 
Segment II than to Segment I. According to the fact observed above, we set Length1 smaller 
than Length2, which ensures a more accurate probability estimation. In Segment III, all of the 
samples are counted in one interval because the number of samples in this segment is much 
smaller than in the other two segments. Another reason for using only one interval is that the 
trend of the rate between splitting and non-splitting varies slowly in this section. Almost all of 
the CUs/TUs in this interval will choose splitting as the best strategy. The values of Th1, Th2, 
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Length1, and Length2 for different CU and TU sizes are listed in Table 1 and Table 2, which 
are our empirical values. 

 To predict whether a node in the quadtree needs to be split into four sub-nodes, the 
probability of splitting must be known. In our proposed method, the algorithm is divided into 
two parts, the probability-estimating stage and the predicting stage. During the overall 
encoding process, an estimating-predicting flag (EPF) is set for every statistical interval. 
When EPF is E, the correlative interval is marked as the estimating stage; otherwise, when 
EPF is P, the interval is marked as the predicting stage. At the beginning of the encoding, all of 
the EPFs are set to E. 

When the estimating stage of an interval begins, the current node, which is probably CU or 
TU, undergoes RDO, and the same process operates for its four sub-nodes if the CU/TU does 
not reach its MaxDepth. After the partition is finally determined, the depth and the COST of 
each level will be stored in a container that is set at the beginning of the estimating stage. The 
size of container Slearn is a crucial parameter. When a small size is set, the probability estimate 
will be inaccurate with a small number of samples. However, if the size is too large, because 
video content is changing constantly, a large statistical bias may exist between the learning 
samples and the predicting samples. Furthermore, if too many samples are learned, encoding 
efficiency will be lost. In our experiment, Slearn is set to 50 empirically. Once the number of 
learned samples in an interval reaches the size of the container, the probability of splitting for 
this interval will be calculated using equation (4). The probability will be stored in a 
probability container. Then, the stage of this interval is set to P. 

When the predicting stage for an interval begins, the algorithm will perform the accelerating 
algorithm to decide the CTU and RQT structure according to the estimated probability of 
splitting. In this stage, another parameter m is used to control the number of CUs/TUs, which 
is under the predicting stage in the interval. In one predicting stage, the upper limit of predicted 
CUs/TUs, Spredict, is defined as follows. 

 
𝑆𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = 𝑆𝑙𝑒𝑎𝑟𝑛 × 𝑚                                                   (6) 

 
If the count reaches the upper limit, the stage of the interval is set to E, and the probability 

of this interval is reset to wait for the next update.  
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4.3 Early splitting and early pruning in deciding the CTU and RQT structure in 
intra coding 

In this part, the above method will be used to accelerate searching for the best CTU structure in 
intra coding. As mentioned in Part 3, whether a CU needs to be split into four sub-CUs is 
determined by JMODE of the current CU and sub-CUs. The choice that leads to a smaller JMODE 
will be chosen as the strategy for the current CU. Thus, an assumption is made that CUs with 
small values of JMODE tend not to be split, while CUs with large values of JMODE tend to be split. 
Based on this assumption, we design early pruning (EP) and early splitting (ES) algorithms to 
decide the structure of CTU for intra coding. 

EP is the process that skips calculating the JMODE of four sub-CUs and makes the current 
CU the leaf node of the CTU quadtree when the splitting probability of the current CU is below 
the threshold α. Coding complexity will be reduced because RDO will not be performed on 
part of the partition.  

ES is slightly more complicated than EP. In our proposed method, the statistical analysis is 
applied on both JMODE and JRMS. The splitting probability is estimated on these two kinds of 
COST. When the stage of the interval is P, two splitting probabilities exist. After calculating 
the JRMS of the CU, the proposed method will look for the splitting probability derived from the 
statistics for JRMS. If the probability is larger than the threshold 𝛽, the algorithm will skip 
computing JMODE for the current CU and set JMODE Max directly. When the sum of the four 
JMODE values of sub-CUs is computed, the codec will definitely choose the split as the best 
choice for the current CU. 

In the predicting stage, if the current CU does not perform either ES or EP, the full RDO 
process will be performed. When the encoding process of the current CU goes into the deeper 
level, the ES and EP test will be continued until the size of the current CU is 8x8. 

 

However, there exists an unsolved problem in the ES algorithm. Consider the situation 
illustrated in Fig. 5. In this figure, CU1 is selected to perform early splitting when the smallest 
JRMS is calculated. The calculation for JMODE of CU1 is skipped and set to Max to perform ES. 
CU0 is a normal CU for which no acceleration algorithm is loaded. It is unreasonable to 
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compare the JMODE of CU0 and the sum of the JMODE values of four sub-CUs because the JMODE 
of CU1 is Max. The same situation recurs in CU1 and CU3. To solve this problem, we defined 
two kinds of JMODE for a CU: JMODE-split and JMODE-pruning. When a CU is determined to perform 
ES, JMODE-split is set to Max, and JMODE-pruning is set to the sum of the JMODE-pruning values of the 
four sub-CUs. In a normal CU or a CU that performs early pruning, JMODE-split and JMODE-pruning 
are set to the original JMODE. Because all of the CUs in depth 3 are normal CUs, for which 
JMODE-pruning is the original JMODE, every JMODE-pruning of CU in depth 2 and depth 1 can be 
calculated recursively. When a CU that has performed ES is used as one of the four sub-CUs to 
calculate the sum of the JMODE of the four, JMODE-pruning is used instead of JMODE-split to calculate 
the sum. 

The proposed method is also applied to searching for the best partition for RQT. The 
structure of RQT is an extension of the CTU, as shown in Fig. 1. The root node of the RQT is 
a leaf node of the CTU quadtree. When deciding whether a TU needs to be split, the JMODE 
values of the current TU and four sub-TUs are compared, as in CU splitting. The assumption 
that CUs with large COST values tend to be split and vice versa can be generalized in RQT. 
Early pruning will be performed based on the assumption that the probability of splitting, 
which comes from the statistics for JMODE of TU, is smaller than the threshold γ. If EP is 
performed, the current TU will skip partitioning in the deeper level and set the TU of the leaf 
node of the RQT.  

4.4 The total algorithm 
The flow chart of the full algorithm is shown in Fig. 6. The left part shows the flow in the CU  
level, and the right part shows the process in the TU level. 
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5. Simulation Results and Analysis 
The proposed method is implemented based on HM10. The default algorithm in HM10 and the 
main profile are used as a comparison. The test condition strictly follows the common test 
conditions defined in [18]. The main parameters of the intra configuration of the HEVC main 
profile are listed in Table 3. Slearn, which is mentioned in (6), is set to 50, and m is set the frame 
rate of sequence.  

Fig. 7 shows the performance results of different methods of accelerating, including early 
pruning of CU, early splitting of CU and early pruning of TU. Three sequences (ParkScene, 
BasketballDrill, and BasketballPass) are used in this test, which come from Class B to Class D. 
The data in Fig. 7 are the average results of the three sequences. The different thresholds are 
set to observe how the RD performance changes and at what level the most time will be saved.  

 

Table 3. The main configuration parameters  
Parameters Value 
MaxCUSize 64x64 
MaxCUDepth   4 
MaxTUSize 32x32 
MinTUSize 4x4 
MaxTUDepth 3 
QP 22, 27, 32, 37 

 

 
(a)                                      (b) 

 
(c) 

 
Fig. 7. Performance comparison of different threshold values. 

In (a), only early CU pruning is performed. In (b), early splitting is performed, 
and in (c), early TU pruning is performed. 
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The reduction of complexity will be calculated by equation (7).  

 
∆𝑇𝑖𝑚𝑒% = (𝑇𝐻𝑀10−𝑇𝑝𝑟𝑜𝑝.)

𝑇𝐻𝑀10
                                             (7) 

 
In Fig. 7, early pruning of CU turns out to be the best accelerating method because it 

obtains the greatest time saving with the smallest BD-rate increase compared to the other two 
methods. Early TU pruning provides consistent performance because with the increasing of 
the threshold, little change occurs in the reduction of complexity and BD-rate increment.  

The overall results of the algorithm in intra coding, including EP of CU, ES of CU, and EP 
of TU, are listed in Table 4. The thresholds of 𝛼,𝛽, 𝛾 are set to 0.25, 0.8, and 0.2. The 
reduction of complexity is represented by the increase in BD-rate. A trend can be obtained 
showing that the performance of the proposed method improves with an increase in the size of 

Table 4. Summary results of the proposed method for sequences in  
Class A to Class E: 𝛼,𝛽, 𝛾 are set to 0.25, 0.8, and 0.2. 

Class & Sequences ∆Time Ave. ∆BD-rate  Ave. 

A 

NebutaFestival 73.8% 

60.6% 

0.52% 

1.25% PeopleOnStreet 35.4% 0.97% 
SteamLocomotiveTrain 72.6% 2.33% 

Traffic 41.3% 1.17% 

B 

BasketballDrive 56.6% 

49.7% 

1.60% 

1.47% 
BQTerrace 38.9% 1.10% 

Cactus 40.8% 1.10% 
Kimono 74.7% 2.89% 

ParkScene 37.4% 0.65% 

C 

BasketballDrill 33.0% 

33.0% 

0.77% 

0.67% BQMall 34.7% 0.90% 
PartyScene 31.6% 0.33% 

RaceHorsesC 32.7% 0.66% 

D 

BasketballPass 38.4% 

31.9% 

0.84% 

0.50% BlowingBubbles 30.5% 0.23% 
BQSquare 31.0% 0.43% 

RaceHorses 27.9% 0.52% 

E 
FourPeople 40.6% 

49.8% 
1.21% 

1.53% Johnny 56.2% 1.93% 
KristenAndSara 52.6% 1.45% 

 Total  44.0%  1.08% 
 

Table 5. Performance comparison between other fast algorithms for Intra coding and our proposed 
method 

 [3] [4] [19] Proposed Method 
∆𝑅 ∆𝑇 ∆𝑅 ∆𝑇 ∆𝑅 ∆𝑇 ∆𝑅 ∆𝑇 

Class A 0.6% 20% 1.0% 22% 2.8% 55% 1.2% 60% 
Class B 0.7% 25% 0.8% 21% 3.1% 56% 1.4% 49% 
Class C 0.7% 19% 1.5% 25% 1.6% 56% 0.6% 33% 
Class D 0.9% 20% 1.7% 24% 1.4% 53% 0.5% 31% 
Class E 0.9% 19% 1.3% 23% 3.5% 60% 1.5% 49% 
Ave. 0.76% 20.6% 1.26% 23.0% 2.48% 56.0% 1.04% 44.4% 
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the sequences. When compressing sequences in Class D, the time is reduced by 31.9% while 
the BD-rate increase is 0.71%. However, when compressing the sequence in Class A, the 
proposed method achieves 60.6% time savings with a BD-rate increase of 1.75%, which is 
slightly higher than the previous result. 

The performance of our algorithm surpassed the previous works [3, 4, 19] in different 
aspects. The performance comparison is shown in Table 5. ∆R represents the BD-rate increase, 
and ∆T is the reduction in complexity. Among the results, Jiang’s work [3] has the lowest 
BD-rate increase; however, its performance is the worst, with only a 20.6% reduction in 
complexity. Sun Heming’s work [19] has the best time performance at the cost of a high 
BD-rate increase. On average, the method in [3] provides 20.6%/0.76=27% encoding time 
reduction per 1% BD-rate increase. The corresponding values for [4, 19] and our proposed 
method are 18.25%, 22.58%, and 42.69%, respectively, which clearly shows that our proposed 
method outperforms the other methods. 

6. Conclusion 
In this paper, we have proposed a fast quadtree structure deciding method for intra coding of 
HEVC. The overall algorithm is separated into two parts, the learning stage and the predicting 
stage. In the learning stage, a probability model between splitting the node and the COST of 
CU/TU is constructed. When performing a non-optimized intra coding algorithm, the COST 
of different CU/TU sizes is separated into different intervals, and the probability of splitting of 
the current node is estimated. In the predicting stage, thresholds are set to the splitting 
probability calculated in the learning stage. Then, ES and EP will perform to accelerate the 
process of deciding the structure of CTU and RQT. The experimental results show that the 
proposed method speeds up the HEVC intra coding by 44.4% at the cost of a 1.08% BD-rate 
increase on average.  
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