• Title/Summary/Keyword: coding delay

Search Result 248, Processing Time 0.022 seconds

초저속 전송을 위한 wavelet 변환기반의 동화상 압축기술

  • 김성환;이홍규
    • Information and Communications Magazine
    • /
    • v.11 no.8
    • /
    • pp.60-77
    • /
    • 1994
  • This paper presents a survey of video coding schemes which use wavelet transform for the videophone on very low bit rate commun ication chan nel( ego 10 Kbps Public Service Telephone Network). Firstly, we introduce the standardization efforts to make the low bit rate videophone architecture and the typical application of low bit rate video coding scheme. Secondly, we summarize the several requirements on videophone, delay, encoder/decoder complexity, low bitrate, and progressive transmission capability. Third, we review the basic theory of wavelet transform without much mathematics. We compare the wavelet transform with short-time fourier transform and subband filters. Fourth, we summarize the video coding schemes proposed so far, and evaluate them with Ule requirements. Lastly, we conclude with fu¬ture research directions.

  • PDF

Non-Reference P Frame Coding in Multiple Reference Frames of Internet Video Coding (IVC 의 다중참조 프레임에서의 비참조 P 프레임 부호화 기법)

  • Kim, Dong-Hyun;Kim, Jae-Gon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.06a
    • /
    • pp.262-263
    • /
    • 2014
  • 현재 MPEG 에서 Royalty-Free 비디오 코덱인 Type-1 표준으로 진행중인 IVC(Internet Video Coding)에서는 저지연 모드(LD: Low-Delay) 부호화 구조에서 비참조 P 프레임 부호화 기법을 적응적으로 사용하여 부호화 이득을 얻고 있다. 비참조 P 프레임 기법은 P 프레임의 타입을 지정하여 고정된 부호화 구조의 비참조 P 프레임을 적용하고 있으나, ITM(IVC Test Model) 9.0 에 구현된 부호화 구조는 다중참조 프레임(MRF: Multiple Reference Frame)을 사용할 때 시간적 예측 거리가 먼 참조 프레임을 먼저 예측하는 단점이 있다. 본 논문에서는 다중참조 프레임에서 기존의 P 프레임 타입 설정을 변경하여 비참조 P 프레임의 부호화 구조를 개선하였다. 실험결과 제안 기법은 시퀀스에 따른 큰 성능 저하 없이 기존 기법 대비 0.6% 정도의 추가적인 비트율 감소로 얻음으로써 비참조 P 프레임 기법이 ITM 9.0 대비 7.9% 정도의 비트율 감소를 얻음을 확인하였다.

  • PDF

A study of the enhanced ATM cell transmission in satellite communication system using variable-size block interleaving (위성망에서 가변블록 인터리빙 기법을 이용한 ATM 셀 전송 성능향상에 관한 연구)

  • 김은경;김낙명
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.5
    • /
    • pp.1-10
    • /
    • 1998
  • Satellite communication is getting more important in the coming 21st century because of its wide areas sevice capability, ease of access, and fast channel establishment. As such, satellite communication networks will be the basis of the global communication system in cooperation with the ground ATM networks. In this paper, we consider an efficient transmission methodology of ATM cells over the satellite communication channel. We first analyze possible bottlenecks and performance deterioration factors in the case, and then propose an enhanced cell trasmission mechanism. In order to use satellite channel for ATM cell transmission, the application of complicated channel coding is inevitable. However, the forwared error control such as convolutional encoding brings forth burst errors, which calls for the application of some kind of interleaving mechanism to randomize the burst errors at the receiver. Another aspect which should b econsidered in satellite communication system is the inherent transmission delay, which can be very considered in satellite communication system is te inherent transmission delay, which can be very critical to the delay-sensitive ATM traffic. Therefore, we propose that the processing delay at the block interleaving stage should be controlled propose a variable-size block interleaving mechanism which utilizes the predicted transmission delay for each traffic in the queues of the transmitter. According to the computer simulation, the proposed mechanism could improve the overall performance by drastically reducing the ATM cell drop rate owing to the excessive transmission delay.

  • PDF

Fast CU Encoding Schemes Based on Merge Mode and Motion Estimation for HEVC Inter Prediction

  • Wu, Jinfu;Guo, Baolong;Hou, Jie;Yan, Yunyi;Jiang, Jie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1195-1211
    • /
    • 2016
  • The emerging video coding standard High Efficiency Video Coding (HEVC) has shown almost 40% bit-rate reduction over the state-of-the-art Advanced Video Coding (AVC) standard but at about 40% computational complexity overhead. The main reason for HEVC computational complexity is the inter prediction that accounts for 60%-70% of the whole encoding time. In this paper, we propose several fast coding unit (CU) encoding schemes based on the Merge mode and motion estimation information to reduce the computational complexity caused by the HEVC inter prediction. Firstly, an early Merge mode decision method based on motion estimation (EMD) is proposed for each CU size. Then, a Merge mode based early termination method (MET) is developed to determine the CU size at an early stage. To provide a better balance between computational complexity and coding efficiency, several fast CU encoding schemes are surveyed according to the rate-distortion-complexity characteristics of EMD and MET methods as a function of CU sizes. These fast CU encoding schemes can be seamlessly incorporated in the existing control structures of the HEVC encoder without limiting its potential parallelization and hardware acceleration. Experimental results demonstrate that the proposed schemes achieve 19%-46% computational complexity reduction over the HEVC test model reference software, HM 16.4, at a cost of 0.2%-2.4% bit-rate increases under the random access coding configuration. The respective values under the low-delay B coding configuration are 17%-43% and 0.1%-1.2%.

Delay-Throughput Analysis Based on Cross-Layer Concept for Optical CDMA Systems (Cross-layer 개념을 바탕으로 한 광 CDMA 시스템을 위한 Delay-Throughput 분석)

  • Kim, Yoon-Hyun;Kim, Seung-Jong;O, Yeong-Cheol;Lee, Seong-Chun;Kim, Jin-Young
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.314-319
    • /
    • 2009
  • In this paper, the network performance of a turbo coded optical code division multiple access (COMA) system with cross-layer, which is between physical and network layers, concept is analyzed and simulated We consider physical and MAC layers in a cross-layer concept. An intensity-modulated/direct-detection (IM/DD) optical system employing pulse position modulation (PPM) is considered In order to increase the system performance, turbo codes composed of parallel concatenated convolutional codes (PCCCs) is utilized. The network performance is evaluated in terms of bit error probability (BEP). From the simulation results, it is demonstrated that turbo coding offers considerable coding gain with reasonable encoding and decoding complexity. Also, it is confirmed that the performance of such an optical COMA network can be substantially improved by increasing the interleaver length and the number of iterations in the decoding process. The results of this paper can be applied to implement the indoor optical wireless LANs.

  • PDF

Performance Comparison of HEVC and H.264/AVC Standards in Broadcasting Environments

  • Dissanayake, Maheshi B.;Abeyrathna, Dilanga L.B.
    • Journal of Information Processing Systems
    • /
    • v.11 no.3
    • /
    • pp.483-494
    • /
    • 2015
  • High Efficiency Video Coding (HEVC) is the most recent video codec standard of the ITU-T Video Coding Experts Group and the ISO/IEC Moving Picture Experts Group. The main goal of this newly introduced standard is for catering to high-resolution video in low bandwidth environments with a higher compression ratio. This paper provides a performance comparison between HEVC and H.264/AVC video compression standards in terms of objective quality, delay, and complexity in the broadcasting environment. The experimental investigation was carried out using six test sequences in the random access configuration of the HEVC test model (HM), the HEVC reference software. This was also carried out in similar configuration settings of the Joint Scalable Video Module (JSVM), the official scalable H.264/AVC reference implementation, running on a single layer mode. According to the results obtained, the HM achieves more than double the compression ratio compared to that of JSVM and delivers the same video quality at half the bitrate. Yet, the HM encodes two times slower (at most) than JSVM. Hence, it can be concluded that the application scenarios of HM and JSVM should be judiciously selected considering the availability of system resources. For instance, HM is not suitable for low delay applications, but it can be used effectively in low bandwidth environments.

Motion Vector Coding Using Adaptive Motion Resolution (적응적인 움직임 벡터 해상도를 이용한 움직임 벡터 부호화 방법)

  • Jang, Myung-Hun;Seo, Chan-Won;Han, Jong-Ki
    • Journal of Broadcast Engineering
    • /
    • v.17 no.1
    • /
    • pp.165-178
    • /
    • 2012
  • In most conventional video codecs, such as MPEG-2 and MPEG-4, inter coding is performed with the fixed motion vector resolution. When KTA software was developed, resolution for MVs can be selected in each slice. Although KTA codec uses a variety of resolutions for ME, the selected resolution is applied over the entire pixels in the slice and the statistical property of the local area is not considered. In this paper, we propose an adaptive decision scheme for motion vector resolution which depends on region, where MV search area is divided to multiple regions according to the distance from PMV. In each region, the assigned resolution is used to estimate MV. Each region supports different resolution for ME from other regions. The efficiency of the proposed scheme is affected from threshold values to divide the search area and the entropy coding method to encode the estimated MV. Simulation results with HM3.0 which is the reference software of HEVC show that the proposed scheme provides bit rate gains of 0.9%, 0.6%, and 2.9% in Random Access, Low Delay with B picture, and Low Delay with P picture structures, respectively.

Design and Implementation of a Sequential Polynomial Basis Multiplier over GF(2m)

  • Mathe, Sudha Ellison;Boppana, Lakshmi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2680-2700
    • /
    • 2017
  • Finite field arithmetic over GF($2^m$) is used in a variety of applications such as cryptography, coding theory, computer algebra. It is mainly used in various cryptographic algorithms such as the Elliptic Curve Cryptography (ECC), Advanced Encryption Standard (AES), Twofish etc. The multiplication in a finite field is considered as highly complex and resource consuming operation in such applications. Many algorithms and architectures are proposed in the literature to obtain efficient multiplication operation in both hardware and software. In this paper, a modified serial multiplication algorithm with interleaved modular reduction is proposed, which allows for an efficient realization of a sequential polynomial basis multiplier. The proposed sequential multiplier supports multiplication of any two arbitrary finite field elements over GF($2^m$) for generic irreducible polynomials, therefore made versatile. Estimation of area and time complexities of the proposed sequential multiplier is performed and comparison with existing sequential multipliers is presented. The proposed sequential multiplier achieves 50% reduction in area-delay product over the best of existing sequential multipliers for m = 163, indicating an efficient design in terms of both area and delay. The Application Specific Integrated Circuit (ASIC) and the Field Programmable Gate Array (FPGA) implementation results indicate a significantly less power-delay and area-delay products of the proposed sequential multiplier over existing multipliers.

MDS Coded Caching for Device-to-Device Content Sharing Against Eavesdropping

  • Shi, Xin;Wu, Dan;Wang, Meng;Yang, Lianxin;Wu, Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4484-4501
    • /
    • 2019
  • In this paper, we put forward a delay-aware secure maximum distance separable (MDS) coded caching scheme to resist the eavesdropping attacks for device-to-device (D2D) content sharing by combining MDS coding with distributed caching. In particular, we define the average system delay to show the potential coupling of delay-content awareness, and learn the secure constraints to ensure that randomly distributed eavesdroppers cannot obtain enough encoded packets to recover their desired contents. Accordingly, we model such a caching problem as an optimization problem to minimize the average system delay with secure constraints and simplify it to its convex relaxation. Then we develop a delay-aware secure MDS coded caching algorithm to obtain the optimal caching policy. Extensive numerical results are provided to demonstrate the excellent performance of our proposed algorithm. Compared with the random coded caching scheme, uniform coded caching scheme and popularity based coded caching scheme, our proposed scheme has 3.7%, 3.3% and 0.7% performance gains, respectively.

Multipath Routing and Spectrum Allocation for Network Coding Enabled Elastic Optical Networks

  • Wang, Xin;Gu, Rentao;Ji, Yuefeng
    • Current Optics and Photonics
    • /
    • v.1 no.5
    • /
    • pp.456-467
    • /
    • 2017
  • The benefits of network coding in all-optical multicast networks have been widely demonstrated. In this paper, we mainly discuss the multicast service efficiently provisioning problem in the network coding enabled elastic optical networks (EONs). Although most research on routing and spectrum allocation (RSA) has been widely studied in the elastic optical networks (EONs), rare research studies RSA for multicast in the network coding enabled EON, especially considering the time delay constraint. We propose an efficient heuristic algorithm, called Network Coding based Multicast Capable-Multipath Routing and Spectrum Allocation (NCMC-MRSA) to solve the multipath RSA for multicast services in the network coding enabled EON. The well-known layered graph approach is utilized for NCMC-MRSA, and two request ordering strategies are utilized for multiple multicast requests. From the simulation results, we observe that the proposed algorithm NCMC-MRSA performs more efficient spectrum utilization compared with the benchmark algorithms. NCMC-MRSA utilizing the spectrum request balancing (SRB) ordering strategy shows the most efficient spectrum utilization performance among other algorithms in most test networks. Note that we also observe that the efficiency of NCMC-MRSA shows more obvious than the benchmark algorithm in large networks. We also conduct the performance comparisons of two request ordering strategies for NCMC-MRSA. Besides, we also evaluate the impact of the number of the linkdisjoint parallel w paths on the spectrum utilization performance of the proposed algorithm NCMC-MRSA. It is interesting to find that the change of the parameter w in a certain range has a significant impact on the performance of NCMC-MRSA. As the parameter w increases to a certain value, the performances of NCMC-MRSA cannot be affected by the change of w any more.