• 제목/요약/키워드: code rate decision

검색결과 60건 처리시간 0.03초

An Accurate Estimation of Channel Loss Threshold Set for Optimal FEC Code Rate Decision (최적의 FEC 부호율 결정을 위한 정확한 채널손실 한계집합 추정기법)

  • Jung, Tae-Jun;Jeong, Yo-Won;Seo, Kwang-Deok
    • Journal of Broadcast Engineering
    • /
    • 제19권2호
    • /
    • pp.268-271
    • /
    • 2014
  • Conventional forward error correction (FEC) code rate decision schemes using analytical source coding distortion model and channel-induced distortion model are usually complex, and require the typical process of model parameter training which involves potentially high computational complexity and implementation cost. To avoid the complex modeling procedure, we propose a simple but accurate joint source-channel distortion model to estimate channel loss threshold set for optimal FEC code rate decision.

Hybrid decision decoding for the extended hamming codes (확대 Hamming 부호에 대한 혼합판정 복호기법)

  • 정창기;이응돈;김정구;주언경
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • 제33A권2호
    • /
    • pp.32-39
    • /
    • 1996
  • Hybrid decision decoding for the extended hamming codes without retransmission, which is a combination of hard and soft decision decoding, is proposed and its performance is analyzed in this paper. As results, hybsrid decision decoding shows a little bit higher residual bit error rate than soft decision decoding. However, as the size of the extended hamming code increases, the difference of th enumber of comparisons increases further. In addition, hybrid decision decoding shows almost same residual bit error rate as hard decision decoding with retrassmission and shows much lower residual bit error rate than hard decision decoding without retransmission.

  • PDF

A BLMS Adaptive Receiver for Direct-Sequence Code Division Multiple Access Systems

  • Hamouda Walaa;McLane Peter J.
    • Journal of Communications and Networks
    • /
    • 제7권3호
    • /
    • pp.243-247
    • /
    • 2005
  • We propose an efficient block least-mean-square (BLMS) adaptive algorithm, in conjunction with error control coding, for direct-sequence code division multiple access (DS-CDMA) systems. The proposed adaptive receiver incorporates decision feedback detection and channel encoding in order to improve the performance of the standard LMS algorithm in convolutionally coded systems. The BLMS algorithm involves two modes of operation: (i) The training mode where an uncoded training sequence is used for initial filter tap-weights adaptation, and (ii) the decision-directed where the filter weights are adapted, using the BLMS algorithm, after decoding/encoding operation. It is shown that the proposed adaptive receiver structure is able to compensate for the signal-to­noise ratio (SNR) loss incurred due to the switching from uncoded training mode to coded decision-directed mode. Our results show that by using the proposed adaptive receiver (with decision feed­back block adaptation) one can achieve a much better performance than both the coded LMS with no decision feedback employed. The convergence behavior of the proposed BLMS receiver is simulated and compared to the standard LMS with and without channel coding. We also examine the steady-state bit-error rate (BER) performance of the proposed adaptive BLMS and standard LMS, both with convolutional coding, where we show that the former is more superior than the latter especially at large SNRs ($SNR\;\geq\;9\;dB$).

VLSI Design of 3-Bit Soft Decision Viterbi Decoder (3-Bit Soft Decision Viterbi 복호기의 VLSI 설계)

  • 김기명;송인채
    • Proceedings of the IEEK Conference
    • /
    • 대한전자공학회 1999년도 추계종합학술대회 논문집
    • /
    • pp.863-866
    • /
    • 1999
  • In this paper, we designed a Viterbi decoder with constraint length K=7, code rate R=1/2, encoder generator polynomial (171, 133)$_{8}$. This decoder makes use of 3-bit soft decision. We designed the Viterbi decoder using VHDL. We employed conventional logic circuit instead of ROM for branch metric units(BMUs) to reduce the number of gates. We adopted fully parallel structures for add-compare-select units(ACSUs). The size of the designed decoder is about 200, 000 gates.s.

  • PDF

Adaptive Decision Feedback Equalizer Based on LDPC Code for the Phase Noise Suppression and Performance Improvement (위상잡음 제거와 성능향상을 위한 LDPC 부호 기반의 적응형 판정 궤환 등화기)

  • Kim, Do-Hoon;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제37권3A호
    • /
    • pp.179-187
    • /
    • 2012
  • In this paper, we propose an adaptive DFE (Decision Feedback Equalizer) based on LDPC (Low Density Parity Check) code for phase noise suppression and performance improvement. The proposed equalizer in this paper is applied for wireless repeater system. So as to meet ever increasing requirements on higher wireless access data rate and better quality of service (QoS), the wireless repeater system has been studied. The echo channel and RF impairments such as phase noise produce performance degradation. In order to remove echo channel and phase noise, we suggest a novel adaptive DFE equalizer based on LDPC code. The proposed equalizer helps to compensate RF impairments and improve the performance significantly better than used independently. In addition, proposed equalizer has less iteration number of LDPC code. So, the proposed equalizer system has low complexity.

The V/UV Decision Algorithm for a Reduction of the Transmission Bit Rate in the CELP Vocoder (CELP 음성부호화기 전송률 감소를 위한 음성신호의 V/UV 결정 알고리즘)

  • Min, So-Yeon;Kim, Hyun-Chul
    • Journal of Advanced Navigation Technology
    • /
    • 제11권1호
    • /
    • pp.87-92
    • /
    • 2007
  • The conventional CELP(code excited linear prediction) type vocoder has no V/UV(voiced/unvoiced) classifier. So, the unvoiced speech is processed like the voiced speech. In this paper, to reduce the bit rate, we propose a new V/UV decision algorithm minimized error rate and preprocessing computation. This V/UV classifier use the LSP(line spectrum pair) parameter which is acquired spectrum analysis process in CELP vocoders. Applying this method to the 5.3kbps ACELP(algebraic code excited linear prediction) in the G.723.1, we can get the transmission bits rate reduction of 6% approximately without degradation of speech quality.

  • PDF

Decision Feedback Equalization Receiver for DS-CDMA with Turbo Coded Systems

  • Chompoo, T.;Benjangkaprasert, C.;Sangaroon, O.;Janchitrapongvej, K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1132-1136
    • /
    • 2005
  • In this paper, adaptive equalizer receiver for a turbo code direct sequence code division multiple access (DSCDMA) by using least mean square (LMS) adaptive algorithm is presented. The proposed adaptive equalizer is using soft output of decision feedback adaptive equalizer (DFE) to examines the output of the equalizer and the Log- maximum a posteriori (Log-MAP) algorithm for the turbo decoding process of the system. The objective of the proposed equalizer is to minimize the bit error rate (BER) of the data due to the disturbances of noise and intersymbol interference (ISI)phenomenon on the channel of the DS-CDMA digital communication system. The computer program simulation results shown that the proposed soft output decision feedback adaptive equalizer provides a good BER than the others one such as conventional adaptive equalizer, infinite impulse response adaptive equalizer.

  • PDF

Error Control Coding and Space-Time MMSE Multiuser Detection in DS-CDMA Systems

  • Hamouda, Walaa;McLane, Peter J.
    • Journal of Communications and Networks
    • /
    • 제5권3호
    • /
    • pp.187-196
    • /
    • 2003
  • We consider the use of error control coding in direct sequence-code-division multiple access (OS-COMA) systems that employ multiuser detection (MUO) and space diversity. The relative performance gain between Reed-Solomon (RS) code and convolutional code (CC) is well known in [1] for the single user, additive white Gaussian noise (AWGN) channel. In this case, RS codes outperform CC's at high signal-to-noise ratios. We find that this is not the case for the multiuser interference channel mentioned above. For useful error rates, we find that soft-decision CC's to be uniformly better than RS codes when used with DS-COMA modulation in multiuser space-time channels. In our development, we use the Gaussian approximation on the interference to determine performance error bounds for systems with low number of users. Then, we check their accuracy in error rate estimation via system's simulation. These performance bounds will in turn allow us to consider a large number of users where we can estimate the gain in user-capacity due to channel coding. Lastly, the use of turbo codes is considered where it is shown that they offer a coding gain of 2.5 dB relative to soft-decision CC.

Design and Performance Analysis of a Decision-feedback Coherent Code Tracking Loop for WCDMA Systems (WCDMA 시스템을 위한 판정궤환 동기식 동기추적 회로의 설계 및 성능분석)

  • 박형래;양연실;김영선;김창주
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제29권4A호
    • /
    • pp.429-438
    • /
    • 2004
  • In this paper, a decision-feedback coherent code tracking loop is designed for WCDMA systems and its performance is analyzed in terms of jitter variance considering the effect of phase and symbol estimation errors for both AWGN and fading environments. An analytical closed-form formula for jitter variance is Int derived for AWGN environments as a function of a pulse-shaping filter, timing offset, signal-to-interference ratio, and loop bandwidth while involving the phase estimation error and bit error rate, and the upper bound of jitter variance is derived for fading environments. Finally a second-order coherent code tracking loop is designed with the DPCH frame format #13 of the WCDHA forward link selected as a target system, and its performance is evaluated by the closed-form formula and compared with the simulation results for both AWGN and Rayleigh fading environments.

Forward Error Control Coding in Multicarrier DS/CDMA Systems

  • Lee, Ju-Mi;Iickho Song;Lee, Jooshik;Park, So-Ryoung
    • Proceedings of the IEEK Conference
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -1
    • /
    • pp.140-143
    • /
    • 2000
  • In this paper, forward error control coding in multicarrier direct sequence code division multiple access (DS/CDMA) systems is considered. In order to accommodate a number of coding rates easily and make the encoder and do-coder structure simple, we use the rate compatible punctured convolutional (RCPC) code. We obtain data throughputs at several coding rates and choose the coding rate which has the highest data throughput in the SINR sense. To achieve maximum data throughput, a rate adaptive system using channel state information (the SINR estimate) is proposed. The SINR estimate is obtain by the soft decision Viterbi decoding metric. We show that the proposed rate adaptive convolutionally coded multicarrier DS/CDMA system can enhance spectral efficiency and provide frequency diversity.

  • PDF