• Title/Summary/Keyword: code equations

Search Result 646, Processing Time 0.026 seconds

Formulation of fully coupled THM behavior in unsaturated soil (불포화지반에 대한 열-수리-역학 거동의 수식화)

  • Shin, Ho-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.808-812
    • /
    • 2010
  • A great deal of attention is focused on coupled Thermo-Hydro-Mechanical (THM) behavior of multiphase porous media in diverse geo-mechanical and geo-environmental areas. This paper presents general governing equations for coupled THM processes in unsaturated porous media. Coupled partial differential equations are derived from 3 mass balances equations (solid, water, and air), energy balance equation, and force equilibrium equation. Finite element code is developed from the Galerkin formulation and time integration of these governing equations for 4 main variables (displacement $\underline{u}$, gas pressure $P_g$, liquid pressure $P_l$), and temperature T). The code is validated with theoretical solutions for linear material with simple boundary conditions.

  • PDF

Prediction of Shear Strength in High-Strength Concrete Beams Considering Size Effect (크기효과를 고려한 고강도 콘크리트 보의 전단강도 예측식 제안)

  • 배영훈;윤영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.878-883
    • /
    • 2003
  • To modify some problems of ACI shear provisions, ultimate shear strength equation considering size effect and arch action to compute shear strength in high-strength concrete beams without stirrups is presented in this research. Three basic equations, namely size reduction factor, rho factor, and arch action factor, are derived from crack band model of fracture mechanics, analysis of previous some shear equations for longitudinal reinforcement ratio, and concrete strut described as linear function in deep beams. Constants of basic equations are determined using statistical analysis of previous shear testing data. To verify proposed shear equation for each variable, namely d, , ρ, f/sub c/' and aid, about 250 experimental data are used and proposed shear equation is compared with ACI 318-99 code, CEB-FIP Model code, Kim & Park's equation and Zsutty's equation. While proposed shear equation is simpler than other shear equations, it is shown to be economical predictions and reasonable safety margin. Hence proposed shear strength equation is expected to be applied to practice shear design.

  • PDF

Application of Hyperbolic Two-fluids Equations to Reactor Safety Code

  • Hogon Lim;Lee, Unchul;Kim, Kyungdoo;Lee, Won-Jae
    • Nuclear Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.45-54
    • /
    • 2003
  • A hyperbolic two-phase, two-fluid equation system developed in the previous work has been implemented in an existing nuclear safety analysis code, MARS. Although the implicit treatment of interfacial pressure force term introduced in momentum equation of the hyperbolic equation system is required to enhance the numerical stability, it is very difficult to implement in the code because it is not possible to maintain the existing numerical solution structure. As an alternative, two-step approach with stabilizer momentum equations has been selected. The results of a linear stability analysis by Von-Neumann method show the equivalent stability improvement with fully-implicit solution method. To illustrate the applicability, the new solution scheme has been implemented into the best-estimate thermal-hydraulic analysis code, MARS. This paper also includes the comparisons of the simulation results for the perturbation propagation and water faucet problems using both two-step method and the original solution scheme.

On the development of succesive finite element code for semiconductor devices analysis (유한요소법(有限要素法)에 의한 반도체(半導體) 소자(素子) 해석(解析)의 안정화(安定化)에 관한 연구(硏究))

  • Choi, Kyung
    • Journal of Industrial Technology
    • /
    • v.9
    • /
    • pp.109-117
    • /
    • 1989
  • In the finite element analysis of semiconductor devices analysis, the solution often be diverged due to the numerical instability of discretized equations. To overcome this problems, a noble finite element code which guarantees a successful convergence is developed. The factor of divergence in the current continuity equation of semiconductor governing equations is derived using stability test and an adaptive mesh refine scheme is introduced to eliminates the divergence properties. A test calculation of GaAs MESFET model reveals that the proposed scheme has a robust self-convergence property and is suitable for the semiconductor devices analysis.

  • PDF

NUMERICAL SIMULATION OF SUPERSONIC FLOW USING POROUS AND ROUGH WALL BOUNDARY CONDITIONS (다공성 벽면(porous-wall)과 거칠기가 있는 벽면(rough-wall)에 과한 경계조건을 이용한 초음속 흐름의 수치모사)

  • Kwak, E.K.;Yoo, I.Y.;Lee, S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.104-111
    • /
    • 2009
  • The existing code which solves two-dimensional RANS(Reynolds Averaged Navier-Stokes) equations and 2-equation turbulence model equations was modified to enable numerical simulation of various supersonic flows. For this, various boundary conditions have been implemented to the code. Bleed boundary condition was incorporated into the code for calculating wall mean flow quantities. Furthermore, the boundary conditions for the turbulence quantities along rough surfaces as well as porous walls were applied to the code. The code was verified and validated by comparing the computational results against the experimental data for the supersonic flows over bleed region on a flat plate. Using the newly modified code, numerical simulations were performed and compared with other computational results as well as the experimental data for the supersonic flows over an oblique shock with a bleed region.

  • PDF

DEVELOPMENT OF A NEW ION TRANSPORT CODE FOR PLANETARY IONOSPHERES WITH EXPLICIT TREATMENT OF ION-ION COLLISION

  • KIM YONG HA
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.59-66
    • /
    • 2005
  • A new ion transport code for planetary ionospheric studies has been developed with consideration of velocity differences among ion species involving ion-ion collision. Most of previous planetary ionosphere models assumed that ions diffuse through non-moving ion and neutral background in order to consolidate continuity and momentum equations for ions into a simple set of diffusion equations. The simplification may result in unreliable density profiles of ions at high altitudes where ion velocities are fast and their velocity differences are significant enough to cause inaccuracy when computing ion-ion collision. A new code solves explicitly one-dimensional continuity and momentum equations for ion densities and velocities by utilizing divided Jacobian matrices in matrix inversion necessary to the Newton iteration procedure. The code has been applied to Martian nightside ionosphere models, as an example computation. The computed density profiles of $O^+,\;OH^+$, and $HCO^+$ differ by more than a factor of 2 at altitudes higher than 200 km from a simple diffusion model, whereas the density profile of the dominant ion, $O_2^+$, changes little. Especially, the density profile of $HCO^+$ is reduced by a factor of about 10 and its peak altitude is lowered by about 40 km relative to a simple diffusion model in which $HCO^+$ ions are assumed to diffuse through non-moving ion background, $O_2^+$. The computed effects of the new code on the Martian nightside models are explained readily in terms of ion velocities that were solved together with ion densities, which were not available from diffusion models. The new code should thus be expected as a significantly improved tool for planetary ionosphere modelling.

NUMERICAL SIMULATIONS OF SUPERSONIC FLOWS USING POROUS AND ROUGH WALL BOUNDARY CONDITIONS (다공성 벽면(porous-wall)과 거칠기가 있는 벽면(rough-wall)에 관한 경계조건을 이용한 초음속 흐름의 수치모사)

  • Kwak, E.K.;Yoo, I.Y.;Lee, D.H.;Lee, S.
    • Journal of computational fluids engineering
    • /
    • v.14 no.4
    • /
    • pp.23-30
    • /
    • 2009
  • The existing code which solves two-dimensional RANS(Reynolds Averaged Navier-Stokes) equations and 2-equation turbulence model equations was modified to enable numerical simulation of various supersonic flows. For this, various boundary conditions have been implemented to the code. Bleed boundary condition was incorporated into the code for calculating wall mean flow quantities. Furthermore, boundary conditions for the turbulence quantities along rough surfaces as well as porous walls were applied to the code. The code was verified and validated by comparing the computational results against the experimental data for the supersonic flows over bleed region on a flat plate. Furthermore, numerical simulations for supersonic shock boundary layer interaction with a bleed region were performed and their results were compared with the existing computational results.

Theoreitica1 analysis of plasma processes in discharge excited KrF laser (방전어기 KrF 레이저의 프라즈마 프로세서 해석)

  • Choi, Boo-Yeon;Lee, Choo-His
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.505-508
    • /
    • 1989
  • A computer simulation code of UV preionized discharge KrF laser is developed, including time dependent circuit equations, boltzmann equations, and plasma kinetic equations for various atomic and molecular species. Rate constants for electron collision processes are calculated with a boltzmann equations as a function of E/N. In this study, we studied mainly the $KrF^*$ formation process, relaxation process, and the 248nm absorption process as a function of charging voltage.

  • PDF

Finite element and design code assessment of reinforced concrete haunched beams

  • Gulsan, Mehmet Eren;Albegmprli, Hasan M.;Cevik, Abdulkadir
    • Structural Engineering and Mechanics
    • /
    • v.66 no.4
    • /
    • pp.423-438
    • /
    • 2018
  • This pioneer study focuses on finite element modeling and numerical modeling of three types of Reinforced Concrete Haunched Beams (RCHBs). Firstly, twenty RCHBs, consisting of three types, and four prismatic beams which had been tested experimentally were modeled via a nonlinear finite element method (NFEM) based software named as, ATENA. The modeling results were compared with experimental results including load capacity, deflection, crack pattern and mode of failure. The comparison showed a good agreement between the results and thus the model used can be effectively used for further studies of RCHB with high accuracy. Afterwards, new mechanism modes and design code equations were proposed to improve the shear design equation of ACI-318 and to predict the critical effective depth. These equations are the first comprehensive formulas in the literature involving all types of RCHBs. The statistical analysis showed the superiority of the proposed equation to their predecessors where the correlation coefficient, $R^2$ was found to be 0.89 for the proposed equation. Moreover, the new equation was validated using parametric and reliability analyses. The parametric analysis of both experimental and predicted results shows that the inclination angle and the compressive strength were the most influential parameters on the shear strength. The reliability analysis indicates that the accuracy of the new formulation is significantly higher as compared to available design equations and its reliability index is within acceptable limits.

Development of the LMFBR Accident Analysis Computer Code (고속증식로 사고분석 코드의 개발)

  • Hee Cheon No
    • Nuclear Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.47-57
    • /
    • 1984
  • Mathematically-rigorous time-volume averaged conservation equations were simplified to established the differential equations of THERMIT-6S, which is a two-fluid 3-D code. The difference equations of THERMIT-6S were obtained by discretizing the proceeding set of differential equations. The spatial discretization is characterized by a first-order spatial scheme, donor cell method, and staggered mesh layout. For time discretization, a first order semi-implicit scheme treats implictly sonic terms and terms relating to local transport phenomena and explicitly convective terms. The results were linearized by the Newton-Raphson method. In order to construct the reduced pressure equation, the linearized equations were manipulated so that all variables are coupled between mesh cells through only the pressure variable. By simulating numerically the OPERA-15 experiment, it was found that THERMIT-6S is a very powerful code in predicting reactor behavior after sodium boiling including flow coastdown, reversal flow and flow oscillation.

  • PDF