• Title/Summary/Keyword: code calibration

Search Result 125, Processing Time 0.024 seconds

Physical Properties of Transiting Planetary System TrES-3

  • Lee, Jae-Woo;Youn, Jae-Hyuck;Kim, Seung-Lee;Lee, Chung-Uk;Koo, Jae-Rim;Park, Byeong-Gon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.65.2-65.2
    • /
    • 2010
  • We present four new transits of the planetary system TrES-3 observed between 2009 May and 2010 June. Among those, the third transit by itself indicates possible evidence for brightness disturbance, which could originate from a starspot or an overlapping double transit. A total of 107 transit times, including our measurements, were used to determine the improved ephemeris with a transit epoch of $2454185.910950\pm0.000073$ HJED (Heliocentric Julian Ephemeris Date) and an orbital period of $1.30618698\pm0.00000016$ d. We analyzed the transit light curves using the JKTEBOP code and adopting the quadratic limb-darkening law. In order to derive the physical properties of the TrES-3 system, the transit parameters are combined with the empirical relations from eclipsing binary stars and stellar evolutionary models, respectively. The stellar mass and radius obtained from a calibration using $T_{eff}$, log $\rho$ and [Fe/H] are in good agreement with those from the isochrone analysis within the uncertainties. We found that the exoplanet TrES-3b has a mass of $1.93\pm0.07\;M_{Jup}$, a radius of $1.30\pm0.04\;R_{Jup}$, a surface gravity of $28.2\pm1.1\;m\;s^{-1}$, a density of $0.82\pm0.06\;\rho_{Jup}$, and an equilibrium temperature of $1641\pm23K$.

  • PDF

Determination of the Fracture Hydraulic Parameters for Three Dimensional Discrete Fracture Network Modeling (3차원 단열망모델링을 위한 단열수리인자 도출)

  • 김경수;김천수;배대석;김원영;최영섭;김중렬
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.2
    • /
    • pp.80-87
    • /
    • 1998
  • Since groundwater flow paths have one of the major roles to transport the radioactive nuclides from the radioactive waste repository to the biosphere, the discrete fracture network model is used for the rock block scale flow instead of the porous continuum model. This study aims to construct a three dimensional discrete fracture network to interpret the groundwater flow system in the study site. The modeling work includes the determination of the probabilistic distribution function from the fracture geometric and hydraulic parameters, three dimensional fracture modeling and model calibration. The results of the constant pressure tests performed in a fixed interval length at boreholes indicate that the flow dimension around boreholes shows mainly radial to spherical flow pattern. The fracture transmissivity value calculated by Cubic law is 6.12${\times}$10$\^$-7/ ㎡/sec with lognormal distribution. The conductive fracture intensity estimated by FracMan code is 1.73. Based on this intensity, the total number of conductive fractures are obtained as 3,080 in the rock block of 100 m${\times}$100 m${\times}$100 m.

  • PDF

Development of the Phased Array Ultrasonic Test Technique for the Weld Inspection of Reactor Coolant System 3" Branch Connection Lines in Nuclear Power Plants (원자로냉각재계통 3" 분기관 용접부 위상배열초음파탐상검사(PAUT)기법 개발)

  • Lee, Seung-Pyo;Moon, Yong-Sig;Jung, Nam-Du;Cho, Yong-Bae;Kim, Chang-Soo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.4 no.2
    • /
    • pp.40-45
    • /
    • 2008
  • There exist many types of pipe and component fatigue through vibrations, thermal fatigues or shifting. In some cases of thermal stratification/thermal fatigue, pipes & components are receiving thermal stress by means of material expansion and shrinkage by continuous thermal repetitive variation. Small cracks initially occur on the inside surface by thermal stress. These cracks grow in depth the pipe wall and finally come to a rupture. Pipe parts of susceptibility to thermal stratification and thermal fatigue are now being examined by conventional UT(ultrasonic test) as volumetric examination. It is difficult to fully satisfy the code & standards requirements because 3" weldolet weldments of RCS 16" pipe to 3" branch connection lines have complex structural shape. To solve the problems of conventional UT examination, we made a realistic mock-up and UT calibration block. We performed a simulation of phased array UT utilizing CIVA as NDE(Non-Destructive Examination) simulation software. Also we designed phased array UT transducer and wedge, optimal frequency by using simulation data. We performed phased array UT experiment through mock-up including artificial flaws(notch). The phased array UT technique is finally developed to improve the reliability of ultrasonic test at RCS 16" pipe to 3" branch connection weld.

  • PDF

Computation of Plug Capacity for Open -Ended Piles Driven into Sands (모래지반에 타입된 개단말뚝의 관내토지지력 산정)

  • 백규호;이승래
    • Geotechnical Engineering
    • /
    • v.9 no.4
    • /
    • pp.7-16
    • /
    • 1993
  • Calibration chamber tests were conducted on open -ended model piles driven into dried siliceous sands with different soil conditions in order to clarify the effect of soil conditions on plug capacity, The model pile used in the test series was devised so that the bearing capacity of an open -ended pile could be measured out into three components , outside shaft resistance. plug resistance and tip resistance. Under several assumption, the value of earth pressure coefficient in the soil plug is calculated. It is gradually reduced with increase in the longitudinal distance from the pile tip. At the bottom of soil plug, it tends to decrease with increase in the penetration depth and relative density, and to increase with the increase of ambient pressure. In comparison of measured and calculated plug capacities using the one -dimensional analysis, we note that API code and one -dimensional analysis combined with P suggested by Randolph et al. and O'Neill et al. result in great underestimation of the plug capacity. Therefore, based on the test results, an empirical equation was suggested to compute the earth pressured coefficient to be used in the calculation of plug capacity using the one -dimensional analysis. and it produces proper plug capacities for all soil conditions.

  • PDF

Flexural Resistance Statistics of Composite Plate Girders (국내 생산 강재를 적용한 강합성 거더 휨저항강도의 통계적 특성)

  • Shin, Dong Ku;Kim, Chun Yong;Rho, Joon Sik;Park, Young Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.2
    • /
    • pp.139-146
    • /
    • 2007
  • The objective of the present study is to provide statistical resistance statistics for steel-concrete composite plate girder sections under positive and negative moments. Statistical properties on yield strength, tensile strength, elongation, and fracture toughness of domestic structural steel products, gathered from an analysis of over 16,000 samples, were evaluated. Using the steel samples for the plate girder, the bias factor and the coefficient of variation of the ultimate flexural resistance for representative composite plate girder sections under positive and negative flexures were presented. In calculating the ultimate flexural resistance of the composite section, the moment curvature relationships were developed using the incremental load approach considering material nonlinearity for the steel girder. The predicted statistics can be used in the future for the efficient calibration of LRFD code.

Uncertainty Analysis for Seakeeping Model Tests (정현파 중 운동모형시험에 대한 불확실성 해석)

  • Deuk-Joon Yum;Ho-Young Lee;Choung-Mook Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.3
    • /
    • pp.75-89
    • /
    • 1993
  • The present paper describes an application of UA(Uncertainty Analysis) to seakeeping model test, basically according to the Performance Test Code of ASME(American Society of Mechanical Engineers), in which all the possible error sources involved in the preparation of test, calibration of instruments, data acquisition and analysis are quantified, and summed up with error propagation coefficients to the final uncertainties. The differences between the static test such as resistance and propulsion test and the dynamic test like seakeeping test are clearly identified during all the procedures of UA and asymmetric bias errors are considered. The DRE(data reduction equation) subject to present UA are the heave and pitch response amplitude operator and nondimensionalized absolute frequency. The usefulness of UA in seakeeping test were confirmed not only for quantifying errors and improving measurement accuracy but also for the validation of various seakeeping analysis tools.

  • PDF

Suggesting a new testing device for determination of tensile strength of concrete

  • Haeri, Hadi;Sarfarazi, Vahab;Hedayat, Ahmadreza
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.939-952
    • /
    • 2016
  • A compression to tensile load transforming (CTT) device was developed to determine indirect tensile strength of concrete material. Before CTT test, Particle flow code was used for the determination of the standard dimension of physical samples. Four numerical models with different dimensions were made and were subjected to tensile loading. The geometry of the model with ideal failure pattern was selected for physical sample preparation. A concrete slab with dimensions of $15{\times}19{\times}6cm$ and a hole at its center was prepared and subjected to tensile loading using this special loading device. The ratio of hole diameter to sample width was 0.5. The samples were made from a mixture of water, fine sand and cement with a ratio of 1-0.5-1, respectively. A 30-ton hydraulic jack with a load cell applied compressive loading to CTT with the compressive pressure rate of 0.02 MPa per second. The compressive loading was converted to tensile stress on the sample because of the overall test design. A numerical modeling was also done to analyze the effect of the hole diameter on stress concentrations of the hole side along its horizontal axis to provide a suitable criterion for determining the real tensile strength of concrete. Concurrent with indirect tensile test, the Brazilian test was performed to compare the results from two methods and also to perform numerical calibration. The numerical modeling shows that the models have tensile failure in the sides of the hole along the horizontal axis before any failure under shear loading. Also the stress concentration at the edge of the hole was 1.4 times more than the applied stress registered by the machine. Experimental Results showed that, the indirect tensile strength was clearly lower than the Brazilian test strength.

A comparative Analysis of Overseas Cases to Enhance Effectiveness of CEO's Safety and Health Duties - Focusing on Serious Accidents Punishment Act(SAPA) and Singapore's New System - (경영책임자 안전보건의무 실효성 제고를 위한 해외사례 비교분석 - 중대재해처벌법과 싱가포르 신설 제도를 중심으로 -)

  • Jeongung Lee;Jaewook Jeong
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.1
    • /
    • pp.55-61
    • /
    • 2023
  • Although corporate punishment-related systems are being implemented in several countries, such as South Korea's Serious Accidents Punishment Act (SAPA), related research has mainly focused on legal issues. This study aimed to compare and analyze the SAPA and Singapore's Workplace Safety and Health Act (WSHA) and Code of Practice on Chief Executives' and Board of Directors' Workplace Safety and Health Duties (WSHD). In addition, it was attempted to draw implications to enhance the effectiveness of the CEO's safety and health duties. For this study, a comparative analysis was conducted in 3 steps. In step 1, similar overseas systems were investigated. In step 2, the system contents were classified into four viewpoints (DUTY, RESOURCE, Other factors, and Main contents), and comparison items were derived from each viewpoint. In step 3, the viewpoints were compared, and implications were derived. The following three implications were derived through comparative analyses. 1) In WSHD, additional explanation and calibration of measures clarify the CEO's role, and 2) It is easy to use for the CEO's duties by providing the resources directly. 3) Penalties for violating the proposed duties are entrusted to the existing higher-level laws. Considering this, providing detailed content and related information for the CEO would possibly improve the SAPA to fulfill his/her duties through announcements from related organizations in the future.

Resistance Factors for Drilled Shafts Embedded in Weathered Rock (풍화암에 근입된 현장타설말뚝의 저항계수 산정)

  • Yoon, Hong-Jun;Jung, Sung-Jun;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.8
    • /
    • pp.107-116
    • /
    • 2007
  • Load and Resistance Factor Design (LRFD) method is being used increasingly in geotechnical design practice worldwide, and is expected to completely replace the current Allowable Stress Design (ASD) method in the near future. LRFD has advantages over ASD in that it allows the design of superstructures and substructures at a consistent reliable level by quantification of failure probability based on reliability analysis. At present, resistance factors for cast-in-place piles embedded in rocks are determined by AASHTO only for the intact rock conditions. In Korea, however, most of the bedrocks in which piles are embedded are heavily weathered. Thus, this study will try to determine the resistance factors of heavily weathered rocks (so-called intermediate goo-materials). To this aim, reliability analysis was carried out to evaluate the resistance factors of cast-in-place piles embedded in intermediate geo-materials in Korea. Pile load test data of 21 cast-in-place piles of 4 construction sites were used for the analysis. Depending on the method which calculates the pile capacities, the resulting resistance factors ranged between 0.1 and 0.6.

Reliability Based Stability Analysis and Design Criteria for Reinforced Concrete Retaining Wall (신뢰성(信賴性) 이론(理論)에 의한 R.C.옹벽(擁壁)의 안정해석(安定解析) 및 설계규준(設計規準))

  • Cho, Tae Song;Cho, Hyo Nam;Chun, Chai Myung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.3
    • /
    • pp.71-86
    • /
    • 1983
  • Current R.C. retaining wall design is bared on WSD, but the reliability based design method is more rational than the WSD. For this reason, this study proposes a reliability based design criteria for the cantilever retaining wall, which is most common type of retaining wall, and also proposes the theoretical bases of nominal safety factors of stability analysis by introducing the reliability theory. The limit state equations of stability analysis and design of each part of cantilever retaining wall are derived and the uncertainty measuring algorithms of each equation are also derived by MFOSM using Coulomb's coefficient of the active earth pressure and Hansen's bearing capacity formula. The levels of uncertainties corresponding to these algorithms are proposed appropriate values considering our actuality. The target reliability indices (overturning: ${\beta}_0$=4.0, sliding: ${\beta}_0$=3.5, bearing capacity: [${\beta}_0$=3.0, design for flexure: [${\beta}_0$=3.0, design for shear: ${\beta}_0$=3.2) are selected as optimal values considering our practice based on the calibration with the current R.C. retaining wall design safety provisions. Load and resistance factors are measured by using the proposed uncertainties and the selected target reliability indices. Furthermore, a set of nominal safety factors, allowable stresses, and allowable shear stresses are proposed for the current WSD design provisions. It may be asserted that the proposed LRFD reliability based design criteria for the R.C. retaining wall may have to be incorporated into the current R.C. design codes as a design provision corresponding to the USD provisions of the current R.C. design code.

  • PDF