[구KMT-03] 외계행성 탐색시스템 데이터베이스 김동진¹, 이충욱¹, 김승리¹, 박병곤¹ ¹한국천문연구원 광학적외선천문연구본부 한국천문연구원은 2009년부터 지구형 외계행성을 검출하기위한 외계행성 탐색시스템 (KMTNet: Korea Microlensing Telescope Network) 개발 사업을 수행하고 있다. KMTNet 은 칠레, 호주, 남아프리카 공화국에 설치할 광시야 망원경으로 은하 중심부를 24시간 연속관측을 하고 600GB/1일의 관측 자료가 산출된다. 이 발표에서는 KMTNet에 필요한 데이터 베이스의 사양을 설명하고 실제 관측 자료를 이용하여 자료 표출 방법 및 최적의 성능을 얻기 위한 실험 결과 등을 제시한다. ## [7KMT-04] Physical Properties of Transiting Planetary System TrES-3 Jae Woo Lee, Jae-Hyuck Youn, Seung-Lee Kim, Chung-Uk Lee, Jae-Rim Koo, and Byeong-Gon Park Korea Astronomy and Space Science Institute, Daejeon 305-348, Korea We present four new transits of the planetary system TrES-3 observed between 2009 May and 2010 June. Among those, the third transit by itself indicates possible evidence for brightness disturbance, which could originate from a starspot or an overlapping double transit. A total of 107 transit times, including our measurements, were used to determine the improved ephemeris with a transit epoch of 2454185.910950 \pm 0.000073 HJED (Heliocentric Julian Ephemeris Date) and an orbital period of 1.30618698 \pm 0.00000016 d. We analyzed the transit light curves using the JKTEBOP code and adopting the quadratic limb-darkening law. In order to derive the physical properties of the TrES-3 system, the transit parameters are combined with the empirical relations from eclipsing binary stars and stellar evolutionary models, respectively. The stellar mass and radius obtained from a calibration using $T_{\rm eff}$, log ρ and [Fe/H] are in good agreement with those from the isochrone analysis within the uncertainties. We found that the exoplanet TrES-3b has a mass of 1.93 \pm 0.07 $M_{\rm Jup}$, a radius of 1.30 \pm 0.04 $R_{\rm Jup}$, a surface gravity of 28.2 \pm 1.1 m s⁻¹, a density of 0.82 \pm 0.06 $\rho_{\rm Jup}$, and an equilibrium temperature of 1641 \pm 23 K.