• Title/Summary/Keyword: cocurrent

Search Result 26, Processing Time 0.024 seconds

An Analysis on Direct-Contact Condensation in Horizontal Cocurrent Stratified How of Steam and Cold Water (동방향 성층이상유동에서의 직접접촉 응축현상에 대한 해석)

  • Lee, Sukho;Kim, Hho-Jung
    • Nuclear Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.130-140
    • /
    • 1992
  • The physical benchmark problem on the direct-contact condensation under the horizontal occurrent stratified flow was analyzed using the RELAP5/MOD2 and /MOD3 one-dimensional model. Analysis was peformed for the Northwestern experiments, which involved condensing steam/water flow in a rectangular channel. The study showed that the RELAP5 interfacial heat transfer model, under the horizontal stratified flow regime, predicted the condensation rate well though the interfacial heat transfer area was underpredicted. However, some discrepancies in water layer thickness and local heat transfer coefficient with experimental results were found especially when there is a wavy interface, and those were satisfied only within the range.

  • PDF

The Effect of Operating Conditions on the Heat-flow Characteristics and Reforming Efficiency of Steam Reformer with Combustor (연소기가 장착된 수증기 개질기에서 운전조건이 열유동 특성 및 개질효율에 미치는 영향)

  • Kim, Ji-Seok;Lee, Jae-Seong;Kim, Ho-Young
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.1
    • /
    • pp.36-45
    • /
    • 2011
  • The heat-flow characteristics and reforming efficiency of steam reformer with combustor are numerically investigated at various operating conditions. SCR(Steam to Carbon Ratio) and GHSV(Gas Hourly Space Velocity) are adopted as important operating conditions. User-Defined-Function(UDF) was used to simultaneously calculate reforming and combustion reaction. Numerical results show that hot burned gas rise by a buoyant force and heat exchange between reforming reactors and cocurrent flow occurs in the combustion region. The results also indicate that an increase of SCR leads to decrease the mole fraction of hydrogen at the reactor outlet. As GHSV increases, conversion rate decreases.

The performance assessment of PSA process using combined dynamic simulation (혼합사건 동적모사를 이용한 PSA공정 성능 평가)

  • Na, Kwang-Sam;Moon, Il;Han, Jae-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.432-435
    • /
    • 1996
  • The performance of one-column isothermal PSA process is assessed by dynamic simulator, gPROMS. The four-step and five-step processes are compared. A five-step process is employed in order to show the effect of the addtional cocurrent depressurization step on the four-step PSA process. Two processes parameters, purity and recovery of SO$_{2}$ are used for the performance comparison. The results of dynamic simulation show that four-step process is superior to five-step process in recovery, but not in purity.

  • PDF

Separation of Organic Pollutants by Nondispersive Membrane-Solvent Extraction (비분산 막-용매추출에 의한 유기오염물의 분리)

  • 유홍진;한성록
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.2
    • /
    • pp.174-185
    • /
    • 2004
  • Organic pollutants (Phenol, 2-Chlorophenol, Nitrobenzene) were separated from wastewater by nondispersive membrane solvent extraction, using a microporous hydrophobic hollow fiber module. The system was operated countercurrently and cocurrently with the aqueous phase flowing through the fiber lumens and the solvent flowing through the shell side. The distribution coefficients of several solvents (MIBK, IPAc, Hexane) were examined and MIBK was selected as an extracting solvent. Separation efficiency of countercurrent flow method was better than that of cocurrent flow method. Also, the overall mass transfer coefficients were determined.

  • PDF

A Study on Cleaning Process for Benzene Recovery in Activated Carbon Bed (활성탄을 충전한 흡착탑에서 벤젠 회수를 위한 세정공정의 연구)

  • Kang, Sung-Won;Min, Byong-Hoon;Suh, Sung-Sup
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.108-116
    • /
    • 2002
  • Experimental Study was carried out for benzene desorption by purge gas or evacuation in an activated carbon bed. As purge gas flow rate increased, desorption rate increased due to the higher interstitial linear gas velocity. For various purge gas flow rates, desoption curves almost got together if they were plotted against dimensionless time. At a higher flow rate, mass transfer zone became narrower. Temperature drop in the bed was more fast and severe at higher flow rates and higher outer temperature. It was found out that desorption was almost completed when the temperature in the drop of the bed returned to the initial temperature before temperature drop. Desorption by vacuum purge was completed in shorter time than desorption by purge gas. Countercurrent purge was more effective than cocurrent purge.

The Design of Cocurrent Two-Way Synchronizations Protocol on a Mobile Environments (모바일 환경에서 동시 양방향 동기화 프로토콜의 설계)

  • Kim, Hong-Ki;Kim, Dong-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.12
    • /
    • pp.2226-2231
    • /
    • 2008
  • As the mobile devices and the wireless networks have high-performance capabilities, it is possible to synchronize the spatio-temporal data of a server with the spatio-temporal data of a mobile device which are collected at a field. However, since the server process the synchronization which the model device requests, the whole synchronizations of mass mobile devices take long time. In this paper, we propose the scheme to process concurrently the synchronizations of mobile devices to use multi-queue which does not conflict.

Characteristics of Flow Regime Transitions in Horizontal Gas-Liquid Two-Phase Flow (수평 기액2상유동에서 유동양식의 천이특성)

  • Lee, S.C.;Lee, J.P.;Kim, J.Y.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.4
    • /
    • pp.342-349
    • /
    • 1988
  • The characteristics of flow pattern transitions in a horizontal cocurrent gas-liquid flow have been investigated by means of a statistical analysis of instantaneous pressure drop curves at an orifice. The dimensionless intensity of pressure drop fluctuation shows a sudden change during the course of flow transitions, indicating that it may be a good measure to identify the flow regime transitions. The probability density function of the curves feature a unique pattern depending upon the flow regimes and the statistical properties of the PDF also have particular ranges for each flow regime. In conclusion, the statistical analysis of instantaneous pressure drops may be a powerful tool for predicting the flow regime transitions.

  • PDF

Recovery of Paraffin Components from Pyrolysis Oil Fraction of Waste Plastic by Batch Cocurrent 4 Stages Equilibrium Extraction (회분 병류 4단 평형추출에 의한 폐플라스틱 열분해유 유분 중의 파라핀 성분의 회수)

  • Kang, Ho-Cheol;Shin, Sung Soon;Kim, Doo Han;Kim, Su Jin
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.630-634
    • /
    • 2018
  • The recovery of paraffin components contained in the fraction as a part of improving the quality for the fraction of waste plastics pyrolysis oil (WPPO) was investigated by batch cocurrent 4 stages equilibrium extraction. The fraction at a distilling temperature of $120-350^{\circ}C$ recovered from WPPO by the simple distillation and a little water-added dimethylformamide (DMF) solution were used as a raw material and solvent, respectively. As the number of equilibrium extraction (n) and the carbon number of paraffin component increased, the concentration of paraffin component contained in the raffinate increased. The concentrations of $C_{12}$, $C_{14}$, $C16$ and $C_{18}$ paraffin components present in the raffinate recovered at n = 4 were about 1.2, 1.5, 1.6 and 1.8 times higher than those of using the raw materials, respectively. Recovery rates (residue rates present in raffinate) of paraffin components rapidly decreased with increasing n, and increased sharply with increasing the carbon number. Furthermore, it was possible to predict the recovery rates at n = 1 - 4 for all paraffin components ($C_7-C_{24}$) contained in the raw material. The raffinate recovered through this study is expected to be used as a renewable energy.

Residence Time Distributions of Liquid pbase Flow and Mass Transfers in the Trickle Bed Reactor (점적상 반응기에서 액상흐름의 체류시간 분포 및 물질전달)

  • Kim, Ki-Chang
    • Journal of Industrial Technology
    • /
    • v.6
    • /
    • pp.19-31
    • /
    • 1986
  • The residence time distribution of liquid flow in a 4.0cm diameter column packed with porous $Al_2O_3$ spheres of 0.37cm diameter were measured with pulse injections of a tracer under cocurrent trickling flow conditions. The mean residence time of liquid flow and liquid hold-up calculated by the transient curve of tracer were unaffected by gas flow rates under experimental ranges of liquid flow rates from 2.4 to $4.5(kg/m^2\;sec)$ and gas flow rates from 0 to $0.13(kg/m^2\;sec)$. The axial dispersion coefficient of liquid stream and apparent diffusivity of tracer in a micropore of solid particle were estimated from the response curve of tracer. The calculated Peclet No. were increased in ranges of 68-to 82 with a increasing of liquid mass velocity, and the external effective contacting efficiency between liquid and solid which can be expressed. by $(D_i)_{app}/D_i$ varied in ranges of 0.54 to 0.68 depending on the liquid flow rates. The gas to liquid(water) volumetric mass transfer coefficient were determined from desorption experiments with oxygen at $25^{\circ}C$ and 1 atm. The measured mass transfer coefficients were increased with liquid flow rates and the effect of gas flow rates on the mass transfer coefficient was insignificant.

  • PDF

Quantitative observation of co-current stratified two-phase flow in a horizontal rectangular channel

  • Lee, Seungtae;Euh, Dong-Jin;Kim, Seok;Song, Chul-Hwa
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.267-283
    • /
    • 2015
  • The main objective of this study is to investigate experimentally the two-phase flow characteristics in terms of the direct contact condensation of a steam-water stratified flow in a horizontal rectangular channel. Experiments were performed for both air-water and steam-water flows with a cocurrent flow configuration. This work presents the local temperature and velocity distributions in a water layer as well as the interfacial characteristics of both condensing and noncondensing fluid flows. The gas superficial velocity varied from 1.2 m/s to 2.0 m/s for air and from 1.2 m/s to 2.8 m/s for steam under a fixed inlet water superficial velocity of 0.025 m/s. Some advanced measurement methods have been applied to measure the local characteristics of the water layer thickness, temperature, and velocity fields in a horizontal stratified flow. The instantaneous velocity and temperature fields inside the water layer were measured using laser-induced fluorescence and particle image velocimetry, respectively. In addition, the water layer thickness was measured through an ultrasonic method.